

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

IP SERVICES DESIGN AND IMPLEMENTATION IN A
PROTOTYPE DEVICE FOR TRANSIENT TACTICAL

ACCESS TO SENSITIVE INFORMATION

by

Ho Liang Yoong

December 2010

 Thesis Advisor: Cynthia E. Irvine
 Second Reader: David J. Shifflett

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2010

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
IP Services Design and Implementation in a Prototype Device for Transient Tactical
Access to Sensitive Information

6. AUTHOR(S) Ho Liang Yoong

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number _____N.A.______.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

In network-centric warfare, access to critical information can result in a strategic advantage. During critical situations,
a soldier using tactical devices may need transient access to information beyond their normal clearances. The Least
Privilege Separation Kernel (LPSK) being developed at the Naval Postgraduate School, can be the basis of an
extended multilevel security (MLS) system that can support and control such access. A Trusted Services Layer (TSL),
which depends on the LPSK, provides support for various multilevel security services. Currently, the LPSK lacks a
software network stack for networking communications. Without networking functionality, tactical devices cannot
share vital situational updates and information superiority is unattainable.

An Internet Protocol (IP) stack was proposed for the LPSK-based system. The IP stack is to be implemented in
the context of the LPSK architecture, which uses modularity and layering to organize its software. Open source
implementations of the IP stack were evaluated to leverage the common functionality required by all IP stacks.
Lightweight Internet Protocol (LWIP) was selected as a starting point for use with the LPSK. LWIP required
modifications for use with the LPSK. The IP stack and a proof of concept networking demonstration were
successfully implemented in this project.

15. NUMBER OF
PAGES

139

14. SUBJECT TERMS least privilege separation kernel, multilevel security, lightweight internet
protocol, network protocol stack, internet protocol stack

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

IP SERVICES DESIGN AND IMPLEMENTATION IN A PROTOTYPE DEVICE
FOR TRANSIENT TACTICAL ACCESS TO SENSITIVE INFORMATION

Ho Liang Yoong
Civilian, Singapore Technologies Engineering, Singapore

B.Eng., Nanyang Technological University, Singapore, 2001
M.Sc., Singapore MIT Alliance, National University of Singapore, Singapore, 2002

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 2010

Author: Ho Liang Yoong

Approved by: Cynthia E. Irvine
Thesis Advisor

David J. Shifflett
Second Reader

Peter J. Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

In network-centric warfare, access to critical information can result in a strategic

advantage. During critical situations, a soldier using tactical devices may need transient

access to information beyond their normal clearances. The Least Privilege Separation

Kernel (LPSK), being developed at the Naval Postgraduate School, can be the basis of an

extended multilevel security (MLS) system that can support and control such access. A

Trusted Services Layer (TSL), which depends on the LPSK, provides support for various

multilevel security services. Currently, the LPSK lacks a software network stack for

networking communications. Without networking functionality, tactical devices cannot

share vital situational updates and information superiority is unattainable.

An Internet Protocol (IP) stack was proposed for the LPSK-based system. The IP

stack is to be implemented in the context of the LPSK architecture, which uses

modularity and layering to organize its software. Open source implementations of the IP

stack were evaluated to leverage the common functionality required by all IP stacks.

Lightweight Internet Protocol (LWIP) was selected as a starting point for use with the

LPSK. LWIP required modifications for use with the LPSK. The IP stack and a proof of

concept networking demonstration were successfully implemented in this project.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. MOTIVATION ..2
B. OBJECTIVES ..3
C. THESIS ORGANIZATION..3

II. BACKGROUND ..5
A. NETWORK TCP/IP PROTOCOLS..5

1. TCP/IP Protocol Suite ...5
2. Encapsulation and Demultiplexing ..8
3. Data Packet Formats ...10

a. TCP Segment...11
b. UDP Datagram..13
c. IP Datagram..13
d. ICMP Message ..15
e. Ethernet Frame...16

B. LEAST PRIVILEGE SEPARATION KERNEL..18
1. Separation Kernels...18
2. Least Privilege Separation Kernel..20
3. Trusted Computing Exemplar Project ..21

III. REQUIREMENTS AND DESIGN...23
A. REQUIREMENTS...23

1. Functional Requirements for the System Prototype.......................23
2. Functional Requirements for the IP Protocol Stack.......................24

B. DESIGN CONSIDERATIONS...27
1. High Level IP Protocol Stack Design ...27
2. IP Protocol Stack in the TCX LPSK..28
3. Layering in the TCX LPSK ..29
4. Open Source Network Protocol Stacks ..30
5. Lightweight Internet Protocol (LWIP) ..32
6. LWIP Data Structures...33

a. Packet Buffer (pbuf) ...33
b. Network Interface (netif) ..34
c. ICMP Echo Header (icmp_echo_hdr)35
d. IP Header (ip_hdr)..35
e. Ethernet Header (eth_hdr) ...36
f. ARP Header (etharp_hdr) ..37

7. LWIP Functions and Function Call Flow..37
8. Final Design ..43

C. SUMMARY ..48

IV. IMPLEMENTATION ...49
A. DEVELOPMENT ENVIRONMENT ..49
B. IMPLEMENTATION METHODOLOGY ...49

 viii

1. Configuring the LPSK for LWIP ...49
2. Miscellaneous System Functions ..50
3. Modification of LWIP Functions..51
4. Implementation of the Ping Application..52

C. SUMMARY ..55

V. TESTING..57
A. FUNCTIONAL TEST CASES ...57

1. Original LWIP Functions ...57
2. Newly Added and Modified LWIP Functions58

B. ACCEPTANCE TESTS ..77
1. Acceptance Test A1 and Results...77
2. Acceptance Test A2 and Results...77
3. Acceptance Test A3 and Results...78

C. PROBLEMS ENCOUNTERED...79
1. Memory Allocation ..79
2. LWIP Heap Memory ...80

D. SUMMARY ..80

VI. CONCLUSION AND FUTURE WORK ...81
A. CONCLUSION ..81
B. FUTURE WORK...82

1. Separation of Privilege Levels...82
2. Transport Layer Services Support...82
3. Network Layer Services Extension...83

APPENDIX A: MAKEFILE CONFIGURATION..85

APPENDIX B: TEST PROCEDURES...87

LIST OF REFERENCES..115

INITIAL DISTRIBUTION LIST ...119

 ix

LIST OF FIGURES

Figure 1. TCP/IP Protocol Suite layers and sample protocols (From [5])6
Figure 2. TCP/IP Protocol Suite protocols used in this work (After Figure 1.4 in [3])7
Figure 3. Data encapsulation in the protocol stack (From Figure 1.7 in [3])9
Figure 4. Demultiplexing of received ethernet frame (After Figure 1.8 in [3])10
Figure 5. TCP segment in IP datagram (From Figure 17.1 in [3])..................................12
Figure 6. TCP header (From Figure 17.2 in [3]) ...12
Figure 7. UDP datagram in IP datagram (From Figure 11.1 in [3])................................13
Figure 8. UDP header (From Figure 11.2 in [3]) ..13
Figure 9. IP header (From Figure 3.1 in [3])...14
Figure 10. ICMP messages in IP datagram (From Figure 6.1 in [3])................................15
Figure 11. ICMP message (From Figure 6.2 in [3])..15
Figure 12. ICMP type message format for Echo Request and Reply (From [11])............16
Figure 13. Ethernet encapsulation (From Figure 2.1 in [3]) ...17
Figure 14. ARP Request/Reply packet format (From [11]) ..17
Figure 15. LPSK configuration (From Figure 1 in [16])...20
Figure 16. High level IP protocol stack design ...28
Figure 17. Architecture for the TCX LPSK (After Figure 1 in [21])29
Figure 18. Modules and layering in the TCX LPSK...29
Figure 19. LWIP function call flow for sending and receiving IP packets41
Figure 20. Flow sequence for sending and receiving IP packets42
Figure 21. IP protocol stack final design...45
Figure 22. Network topology for Net_Prod and Net_Cons partitions53

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Inter-partition flow policy (From Table 1 in [16])...19
Table 2. Subject-Resource flow matrix (From Table 3 in [16])21
Table 3. Functional requirements for the system prototype...24
Table 4. Functional requirements for the IP protocol stack...25
Table 5. Functional requirements for network layer services (FR1-1)25
Table 6. Functional requirements for ethernet layer services (FR1-2)26
Table 7. Functional requirements for ping application (FR2-1)26
Table 8. Evaluation criteria of network protocol stacks ..31
Table 9. TCP/IP features implemented by uIP and LWIP (From Table 1 in [27])........32
Table 10. Packet buffer data structure (From [27]) ...33
Table 11. Network interface data structure (From [29]) ..34
Table 12. ICMP echo header data structure (From source code in [30]).........................35
Table 13. IP header data structure (From source code in [30])..36
Table 14. Ethernet header data structure (From source code in [30])..............................36
Table 15. ARP header data structure (From source code in [30])37
Table 16. LWIP functions (From [24])..39
Table 17. Flow sequence for sending and receiving IP packets43
Table 18. Data structure for IP datagram buffer ..46
Table 19. Data structure for Ethernet frame buffer..47
Table 20. Essential LWIP files used ..50
Table 21. Miscellaneous system functions required by LWIP ..51
Table 22. Input parameters of additional functions ...54
Table 23. Return values between functions ...55
Table 24. Testing original LWIP functions ...58
Table 25. Function test groupings..59
Table 26. Function test Group A – low_level_output() ...60
Table 27. Function test Group B – get_next_frame() ..62
Table 28. Function test Group C – get_eth_ip_frame() ...63
Table 29. Function test Group D – get_ip_datagram() ..65
Table 30. Function test Group E – get_icmp_packet() ..67
Table 31. Function test Group F – recv_ping()..68
Table 32. Function test Group G – get_eth_arp_frame()...69
Table 33. Function test Group H – ip_input_verify() ..71
Table 34. Function test Group I – etharp_request() ...72
Table 35. Function test Group J – send_icmp() ...74
Table 36. Function test Group K – send_ping()...76
Table 37. Acceptance test A1: Sending ICMP Echo from one host77
Table 38. Acceptance test A2: Sending ICMP Echo between hosts................................78
Table 39. Acceptance test A3: Sending ICMP Echo to non-responding host79

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

ARP Address Resolution Protocol

DNS Domain Name System

FR Functional Requirements

FTP File Transfer Protocol

HTTP HyperText Transfer Protocol

ICMP Internet Control Message Protocol

IGMP Internet Group Management Protocol

IP Internet Protocol

LPSK Least Privilege Separation Kernel

LWIP Lightweight Internet Protocol

OS Operating System

OSPF Open Shortest Path First

POP3 Post Office Protocol version 3

RARP Reverse Address Resolution Protocol

RFC Request for Comments

SMTP Simple Mail Transfer Protocol

SR System Requirements

SSH Secure Shell

TCP Transmission Control Protocol

TCX Trusted Computing Exemplar

TPA Trusted Path Application

TSL Trusted Services Layer

UDP User Datagram Protocol

uIP Micro Internet Protocol

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Cynthia Irvine, for her valuable guidance

and support for the completion of this thesis. I would also like to thank David Shifflett,

for his technical expertise and insights as a second reader. I would like to express my

gratitude to Singapore Technologies Engineering for sponsoring me on this master

course. Last, but not least, I thank my wife, Calyn, for her patience and understanding

throughout the thesis process.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

In today’s network-centric warfare, having an information advantage is critical to

any successful mission. Tactical wearable devices permit soldiers on the ground to

receive and share information, allowing them situational awareness. There are, however,

concerns regarding access to and protection of information when it is at different

classification levels. These concerns must be considered during critical situations when

soldiers may need to access information at a higher classification level than they are

normally cleared for. Information labeled Top Secret may be disseminated to a tactical

device that is assigned to solider who is cleared only to the Secret level. The Top Secret

information, if not properly handled and securely protected by the tactical device, would

be accessible by the soldier even during non-critical times. Moreover, if the tactical

device is unable to protect classified information and falls into the hands of adversary

able to access it, the battle may be lost. Alternatively, if the tactical device does not grant

soldiers access to sensitive information at critical moments, soldiers may be less

informed of any situational updates, which may be crucial to winning the battle.

Therefore, a tactical multilevel security (MLS) device that is high assurance is required to

protect information at different classification levels and to facilitate transient access to

critical information at designated times. A Least Privilege Separation Kernel (LPSK) is

able to meet such requirement since it supports the notion of transient trust whereby

sensitive information is temporarily available to users only during critical situations [1].

The Trusted Computing Exemplar (TCX) project spearheaded by the Center for

Information Systems Security Studies and Research (CISR) at the Naval Postgraduate

School (NPS) provides an “example of how high assurance trusted computing

components can be built” [2]. The LPSK is part of the TCX project. It will be used as a

component for a tactical MLS system prototype. LPSK provides the assurance foundation

for a tactical MLS system prototype. It uses the principle of least privilege and the

concept of subject-resource flows, which is an extension of inter-partition flow concept

of separation kernels. The LPSK project also uses extensive modularity and layering in

its implementation.

 2

The MLS services are supported in a Trusted Services Layer (TSL), which

depends on the LPSK. The MLS system prototype, however, lacks an Internet Protocol

(IP) stack for interacting with network devices. A tactical MLS device with networking

capabilities is essential in the battlefield. Soldiers in the battlefield who carry a tactical

MLS device without networking capabilities are likely to be on the losing side. Those

soldiers would not able to receive updated situational information and would be forced to

fight the battle at an information disadvantage. Having an IP stack in the MLS system

prototype not only allows communication with network devices, but also opens the

possibility of establishing connections to the Internet. The motivation for considering an

IP stack implementation for the tactical MLS system is elaborated in the next section.

A. MOTIVATION

The current services provided in conjunction with the MLS system prototype do

not include a software-based network protocol stack. Neither does the system prototype

have a hardware network driver. Writing network drivers for hardware is difficult.

Therefore, as an interim solution prior to the development of a complete hardware driver

module, building an IP stack supported by functions that simulate network traffic is the

motivation for this thesis project.

Having an IP stack in the MLS system prototype enables several interim and long

term capabilities. Network traffic in the form of IP data packets can be simulated using

the IP stack. A software module can be implemented in the prototype to simulate the

generation of IP packets of a physical hardware device. Using the generated IP packets,

experiments can be conducted to study the implications of various types of IP packets

coming into the prototype. In addition, considerable functionality can be explored using

simulated network traffic.

The need for an IP stack leads to the postulation that the IP stack can be built and

used with supporting software to simulate network traffic in a tactical MLS system

prototype. It is also hypothesized that the design of an IP stack can be modularized and

layered in a manner similar to the overall LPSK architecture, thus contributing to

arguments that it is a high assurance system.

 3

B. OBJECTIVES

The main focus of this study is to implement an IP stack in the MLS system

prototype. A further objective of this thesis is to provide a producer-consumer

demonstration where both the producer and the consumer depend upon the IP stack and

networked communication to interoperate.

C. THESIS ORGANIZATION

Chapter I provides an introduction to this thesis and includes the motivation and

objectives of this work. Chapter II provides background information on the key concepts

of TCP/IP protocols and the LPSK. Chapter III describes the requirements and design

considerations for the IP protocol stack. Chapter IV explains implementation details for

the IP protocol stack, including a description of the software and hardware environment

as well as the methodology used in the development of the IP protocol stack. Chapter V

describes the functional and acceptance test cases for testing the IP protocol stack, and a

discussion of problems encountered. Chapter VI concludes the thesis with

recommendations for future enhancement of the IP protocol stack.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. BACKGROUND

Before discussing the implementation of an IP stack for the LPSK, it is useful to

review how the networking stack is organized and the system for which it will be

implemented. Section A examines the key concepts of the TCP/IP protocols. Section B

elaborates on the Least Privilege Separation Kernel (LPSK) implemented in the TCX

project [2].

A. NETWORK TCP/IP PROTOCOLS

This section provides a brief review of the TCP/IP stack. Readers interested in

more details should consult Steven’s TCP/IP Illustrated [3].

1. TCP/IP Protocol Suite

The set of communication protocols commonly used for communicating with

other systems in a network is the Internet Protocol Suite. It is also called the TCP/IP

Protocol Suite where Transmission Control Protocol (TCP) and Internet Protocol (IP) are

the two most important protocols. TCP ensures that data is reliably exchanged between

two hosts. IP manages the addressing and routing facet of communication within a

network and across networks.

Usually, communication protocol suites are made up of a set of software layers.

Each layer involves a set of functions and operations. A lower layer exports a set of

resources and functionalities to an upper layer, where they are used to create new

abstractions and functionalities. For example, the lower layer translates data packets

passed down from an upper layer into frames, which eventually will be transmitted

through physical devices to the network. In contrast, the upper layer handles data passed

up from the lower layer and is closer to the user or application interface. The TCP/IP

Protocol Suite has four layers in accordance with RFC1122 [4]. The layers from lowest to

highest are: Network Interface Layer, Network Layer, Transport Layer and Application

Layer. Examples of common protocols in each layer are shown in Figure 1.

 6

Application Layer
DNS, FTP, HTTP, POP3, SMTP,

SSH, Telnet, Echo

Transport Layer TCP, UDP

Network Layer IP, ICMP, IGMP

Network Interface
Layer

ARP, RARP, OSPF

Figure 1. TCP/IP Protocol Suite layers and sample protocols (From [5])

Each layer has its own set of responsibilities in the overall communications

protocol. The network interface layer, also known as data-link layer, includes the

management of the device driver and the network interface card within the host. This

layer also provides an interface to the hardware that is physically attached to a host. The

network layer is responsible for managing the transport of packets from a source host

across the network to a specific destination host, based on the destination network

address. The transport layer is responsible for the flow of data between two hosts in

support of the application layer. The application layer contains the functionality for each

particular application.

The TCP/IP protocol suite consists of various protocols. Figure 2 shows the

protocols used in this study.

 7

Figure 2. TCP/IP Protocol Suite protocols used in this work (After Figure 1.4 in [3])

In the transport layer, TCP and the User Datagram Protocol (UDP) are the two

most common transport protocols. TCP is a connection-oriented protocol and ensures

reliable delivery of data between two hosts. Connection-oriented [6] means that a stream

of data is received in the same order as it was sent. TCP has flow control mechanisms

designed to provide guaranteed delivery. As such, there is a performance overhead

involved for TCP due to its flow control mechanism. On the other hand, UDP does not

guarantee that the data it is delivering will reach its final destination. UDP has a smaller

overhead and is used where speed is required and reliability is not needed, for example,

in streaming media.

 8

In the network layer, Internet Protocol (IP) is the main protocol used. Any data

from TCP and UDP or data received from the network interface layer will go through IP.

Internet Control Message Protocol (ICMP) is in the same layer as IP. ICMP is mainly

used by IP for exchanging error messages with the network layer of another host. ICMP

can also be accessed by applications such as ping for diagnostic purposes.

The Address Resolution Protocol (ARP) is a protocol at the network interface

layer. ARP is used to map the IP address in the network layer to the hardware address

(MAC address) used by network interface. The MAC address of a network interface card

is assigned by the manufacturer and is stored in the hardware. Since the ARP provides a

mapping of a MAC address to an IP address, the MAC address of a network interface

card can be determined by using an ARP query with the IP address assigned to the

system. When a local host broadcasts an ARP request, the remote host that belongs to the

IP address requested will send back an ARP reply. Both the local host and the remote

host will add an entry to their ARP cache table to store the IP-MAC address mapping.

The ARP cache entry can be either static or dynamic. A static entry is manually added

and stays permanent. A dynamic entry is added automatically and stays valid for a

specified period.

When data is sent over an internetwork from one host to another, it may originate

in a high layer of the TCP/IP stack and may have to travel across more than one physical

network. In order for the data to be delivered and received correctly, it is encapsulated

with more information as it flows down the TCP/IP protocol stack. On the receiving end,

the received bit stream will be demultiplexed as it flows up the protocol stack. The next

section will elaborate on the encapsulation and demultiplexing process of the TCP/IP

protocol.

2. Encapsulation and Demultiplexing

When a user application sends data over the network, the data is sent through

different layers in the TCP/IP protocol stack. Each unit of data sent from one layer to the

next layer is of a different type. The data unit that the transport layer sends to the network

layer is called a segment; and network layer to network interface layer is called a

 9

datagram. The bit stream flowing through an Ethernet is called a frame. An Ethernet is a

type of bus network based on the IEEE 802.3 standard [7]. It is widely used for local area

networks (LAN). It works on an access control method called Carrier Sense, Multiple

Access with Collision Detection (CSMA/CD) [8]. The access method allows multiple

computers in a network to send data at the same time, and has a mechanism for detecting

collisions that happen when two computers send data to one another at the same instant.

Figure 3 shows the data encapsulation process. As data passes through each layer,

header information of the corresponding layer is prepended to it. For instance, when a

user sends data to a destination host from a user application, the user data is prepended

with an application header as it passes through the application layer. From the transport

layer to the network layer, TCP or UDP header information is added to the application

data. IP header information, which is added to the TCP or UDP segment, is passed down

to the network interface layer as an IP datagram. An Ethernet header is then prepended to

the IP datagram as data travels through network interface layer. Eventually, the data is

physically transmitted through the Ethernet link as a stream of bits.

Figure 3. Data encapsulation in the protocol stack (From Figure 1.7 in [3])

 10

Upon receiving the bit stream on the destination host, the encapsulation process is

reversed. This process is known as demultiplexing. Figure 4 shows the demultiplexing

process when an Ethernet frame is received. The network interface layer removes the

Ethernet header from the Ethernet frame and passes it up to the network layer as an IP

datagram. The IP layer removes the IP header from the datagram and passes the TCP or

UDP segment to transport layer. The transport layer then removes the TCP or UDP

header and passes it up the protocol stack for use by the user application. In Figure 4, the

ICMP protocol is drawn slightly above IP protocol and below TCP/UDP. This is to

illustrate that ICMP does not belong to the transport layer but rather, it is an addition to

IP. This means that ICMP messages are encapsulated in IP datagrams and both of them

belong to the network layer. Similarly for the ARP protocol, ARP has its own Ethernet

frame type, so it is below the IP layer.

Figure 4. Demultiplexing of received ethernet frame (After Figure 1.8 in [3])

3. Data Packet Formats

This section will examine some of the common data formats from the transport

layer down to the network interface layer.

 11

a. TCP Segment

The TCP segment between the transport layer and network layer is

encapsulated as an IP datagram as shown in Figure 5. The format of the TCP header is

shown in Figure 6. Each TCP segment has a source and destination port number, which

are used by the sending and receiving applications, respectively. An IP address combined

with a port number forms a socket. Together with the source and destination IP addresses

in the IP header, the source and destination port numbers form a socket pair. In a TCP

connection, a socket pair defines the two endpoints of the connection [9].

Both the sequence number and the acknowledgement number ensure that

data transferred during a TCP connection is accounted for. The sequence number is used

to reference the first byte of data that is to be sent. A transmitting TCP module will send

over the data, then the receiving TCP module will add the sequence number to the

number of bytes received and will use the total as the acknowledgement number. The

acknowledgement number is then sent back to the sender, which uses it to reference the

first byte of data for the next data transmission. The acknowledgement number sent by a

sender is the sequence number the sender expects to receive.

The header length in the TCP header shows the number of 32-bit words in

the header. The minimum TCP header length is 20 bytes (i.e. minimum value = 5 words).

If options are used, the maximum length is 60 bytes (maximum value = 15 words). There

are six flags (1 bit each) used in the TCP header. They are as follows:

URG: Urgent pointer valid

ACK: Acknowledgement number valid

PSH: Push data

RST: Reset connection

SYN: Synchronize sequence numbers

FIN: Finish connection

A 16-bit window (called 16-bit window size) is used for flow control

purposes. There may be errors during data transmission and to provide protection against

 12

transmission errors, the TCP header includes a 16-bit checksum. The checksum covers

both the TCP header and the TCP data. The receiving TCP will verify this checksum by

comparing this value with the one calculated based on the received TCP segment. The

urgent pointer field in the TCP header is used when the URG bit is set. It is used when

there is a need for priority data transfer. This field stores the sequence number of the last

byte of the urgent data.

Figure 5. TCP segment in IP datagram (From Figure 17.1 in [3])

Figure 6. TCP header (From Figure 17.2 in [3])

 13

b. UDP Datagram

UDP is another transport layer protocol but is much simpler than TCP. A

UDP datagram is encapsulated in an IP datagram as can be seen in Figure 7. Since UDP

is a simple protocol, its header is only 8 bytes in length. Figure 8 shows the fields of a

UDP header. The fields in the UDP header are comprised of source and destination port

numbers, the total length of the UDP datagram (including header and data) and the

checksum of the UDP datagram (including the UDP header and UDP data).

Figure 7. UDP datagram in IP datagram (From Figure 11.1 in [3])

Figure 8. UDP header (From Figure 11.2 in [3])

c. IP Datagram

TCP and UDP data eventually are transmitted as IP datagrams. Figure 9

shows the fields of an IP header. The version indicates the version of IP used. The header

length denotes the length of the IP header including the options field. The type of service

 14

(TOS) field is used in providing additional quality of services. Four types of services can

be provided: minimize delay, maximize throughput, maximize reliability, and minimize

cost. The total length field specifies the total length of the whole IP datagram. The

identification field is used as an identifier of each datagram sent from a host. The 3-bit

flags and 13-bit fragmentation offset are used during fragmentation. Of the 3-bit control

flags, two are used to handle fragmentation: DF (Don’t Fragment) and MF (More

Fragment). The fragmentation offset specifies the position of original message that the

fragmented data represents. Time to live (TTL) field denotes the number of remaining

hops the datagram can be forwarded. The protocol field indicates which higher layer

protocols are carried by the datagram. For example, some of the commonly used

protocols are: TCP, UDP, ICMP, IGMP etc. The checksum field used for transmission

error checking accounts for the IP header only. The IP header also has fields to specify

the source IP address and destination IP address.

Figure 9. IP header (From Figure 3.1 in [3])

 15

d. ICMP Message

ICMP messages are encapsulated in IP datagrams (see Figure 10). The

format of an ICMP message is illustrated in Figure 11. The type field indicates which

type of ICMP message the packet represents. For example, a destination unreachable

ICMP message is of type 3, which indicates that the packet is undeliverable. The code

field is used to provide specific details of the condition a particular ICMP message type is

describing. For instance, an ICMP message of type 3 and code 3 indicates a “Destination

Unreachable” error message. Code 3 implies that the port of the remote host is

unreachable. Other ICMP message types and codes can be found in RFC792 [10]. The

checksum field applies to the whole ICMP message including the header and data portion.

The size of an ICMP message depends on the type and code of the ICMP message. Two

additional fields (as can be seen in Figure 12): identifier and sequence number are

required for Echo Request/Reply ICMP type message.

Figure 10. ICMP messages in IP datagram (From Figure 6.1 in [3])

Figure 11. ICMP message (From Figure 6.2 in [3])

 16

Figure 12. ICMP type message format for Echo Request and Reply (From [11])

e. Ethernet Frame

The TCP/IP Protocol has support for different kinds of network interface

layers, which depend on the type of hardware used. In our study, we will assume the use

of Ethernet as the networking hardware. At the network interface layer, IP datagrams are

encapsulated within Ethernet frames. The format of Ethernet encapsulation based on RFC

894 is shown in Figure 13. The Ethernet header consists of source and destination

hardware addresses, a type field, and a cyclic redundancy check (CRC) field. Ethernet

frames can be of three types: IP (0x0800), ARP (0x0806), or RARP (0x8035).

For the ARP type, the packet format for ARP requests and replies is

shown in Figure 14. The hardware address type field indicates the type of hardware

address (for example, Ethernet). The protocol address type field represents the type of

protocol address being used (for example, IPv4). The H/W Addr. Len and Prot. Addr Len

specify the number of bytes used by hardware addresses and protocol addresses,

respectively. The Operation field denotes the type of operation: i.e., whether it is a

Request or Reply operation. Other fields in the ARP packet are: source and destination

hardware addresses, as well as source and destination protocol addresses.

 17

Figure 13. Ethernet encapsulation (From Figure 2.1 in [3])

Figure 14. ARP Request/Reply packet format (From [11])

 18

In summary, data packet formats are based on the Request for Comments (RFC)

documents published by Internet Engineering Task Force (IETF) [12]. Interested readers

can look up the following RFCs for detailed information on a particular data packet

format.

 TCP – RFC793

 UDP – RFC768

 IP – RFC791

 ICMP – RFC792

 Ethernet – RFC894

 ARP – RFC826

B. LEAST PRIVILEGE SEPARATION KERNEL

This section describes the Least Privilege Separation Kernel of the Trusted

Computing Exemplar project. First, a brief review of separation kernels is provided.

1. Separation Kernels

A kernel forms the core component of an operating system. It manages system

resources through inter-process communication mechanisms and system calls. User

interactions with the system resources as well as data flows between user applications

often depend on security policy enforcement by the kernel.

A special type of kernel is a security kernel. The set of security features for

controlling access to system resources resides in the security kernel. A security kernel

implements the reference monitor concept [13]; it is always invoked, tamperproof and

small enough to be verifiable such that assurance for correctness and completeness is

provided. A security kernel usually binds security labels to resources and then mediates

access of subjects to resources based on the labels according to an internal security policy

[14].

 19

A separation kernel is a type of kernel introduced by Rushby in 1981 [15]. He

noticed that, in a distributed system, data cannot flow between computers if they are not

physically connected to one another. His idea for a separation kernel relies on the same

principle. He proposed that, in a separation kernel, individual components of a system are

separated into partitions, which mimic individual computers of a distributed system. Data

can only flow between partitions if the partitions are “connected.” The connectivity

between partitions is usually defined by a data flow policy. A separation kernel therefore

allows components of a system to be separated into partitions and ensures that

components within a partition cannot access information in another partition if they are

not given permission to access that information.

Separation kernels are also known as partitioning kernels, as system resources are

separated into partitions. Resources include subjects and objects. Separation kernels

provide a resource-partition mapping to separate the resources among partitions. An

inter-partition flow policy can be defined to specify the sharing of information between

partitions. An example of inter-partition flow policy that can be enforced in a separation

kernel is shown in Table 1. Subjects belonging to a particular partition can only access

resources in another partition if the data flow policy enforced by the separation kernel

allows it. Nevertheless, separation kernels only regulate data flow at the partition level.

Finer granularity on the access permitted to subjects to interact with resources is usually

not specified for separation kernels. Unlike typical separation kernels, a least privilege

separation kernel, which will be discussed next, provides finer granularity regarding

subject-to-resource accesses.

 Partition A Partition B Partition C
Partition A RWX W -
Partition B - RWX W
Partition C - - RWX

Table 1. Inter-partition flow policy (From Table 1 in [16])

 20

2. Least Privilege Separation Kernel

A Least Privilege Separation Kernel (LPSK) extends the separation kernel

abstraction [16] with the principle of least privilege [17]. A separation kernel alone only

defines a security policy on inter-partition flows. Resources in a partition are not visible

to other partitions unless a flow is allowed between partitions. This means that if data

flow is specified at the partition level, every subject in a particular partition can access

any resource in another partition. In doing so, the principle of least privilege as required

for high assurance systems is not realized. In contrast, an LPSK provides greater

granularity on the interaction between subjects and resources within a partition. An LPSK

extends the inter-partition flow concept of separation kernels with “subject-resource”

flows. Given a data flow between two partitions as specified by a separation kernel, an

LPSK also defines how each subject of a partition is allowed to access resources either in

its own partition or in other partitions. For example, a least privilege separation kernel

configuration is illustrated in Figure 15. The arrows in the illustration represent the data

flow to or from a subject and a resource.

Figure 15. LPSK configuration (From Figure 1 in [16])

In Figure 15, there are three partitions: A, B and C. Partition A consists of two

subjects: Subject 1 and Subject 2. Subject 1 can read and write to Resource 4 whilst

 21

Subject 2 can only read from Resource 5 and write to Resource 6, which is in another

partition B. Subject 3 in partition B can read from and write to Resource 6 as well as

write to Resource 9, which belongs to partition C. Subject 3 has no access to Resources 7

and 8 in its own partition B. The data flow between subjects and resources can be defined

in the form of a matrix as shown in Table 2.

Resources
 1 2 4 5 6 9

1 - RW RW - - -
2 RW - - R W -

S
u

b
je

ct
s

3 - - - - RW W

Table 2. Subject-Resource flow matrix (From Table 3 in [16])

3. Trusted Computing Exemplar Project

The main purpose of the Trusted Computing Exemplar (TCX) Project is to

provide a “worked example of how high assurance trusted computing components can be

built” [2]. The TCX project has four deliverables:

 Creation of a prototype framework for rapid high assurance system

development

 Development of a reference implementation trusted computing component

 Evaluation of the component for high assurance

 Open dissemination of deliverables related to the first three activities [1].

The trusted computing component implemented in TCX project is the LPSK

kernel, the implementation of which is in compliance with U.S. Government Protection

Profile for Separation Kernels in Environments Requiring High Robustness [18].

 22

THIS PAGE INTENTIONALLY LEFT BLANK

 23

III. REQUIREMENTS AND DESIGN

This chapter first explains the requirements for the implementation of an IP

protocol stack in the LPSK, and then discusses the design considerations for the IP

protocol stack implementation. Section A describes the functional requirements for the

system prototype as well as for the IP protocol stack. Section B describes a high level

design of the IP protocol stack followed by an explanation of the placement of the IP

protocol stack in the LPSK. Section B also reviews a few open source network protocol

stacks from which the Lightweight Internet Protocol (LWIP) TCP/IP stack eventually is

selected. Some of the relevant LWIP data structures and functions are highlighted in the

same section. The section finishes with an elaboration of the final design of an IP

protocol stack.

A. REQUIREMENTS

The current implementation of the LPSK lacks a hardware driver module for

networking devices. An interim solution prior to the development of a complete hardware

driver is to develop a network packet generator from which the network protocol stack

can consume generated packets. The requirements of this project thus can be separated

into functional requirements for the primitive system prototype to demonstrate

networking capability and functional requirements for the network protocol stack. As the

main objective of this project is to demonstrate the concepts of IP networking in the

LPSK prototype, the requirements for the full suite of the TCP/IP protocol stack will not

be considered. Instead, only the IP protocol stack will be considered in the preliminary

demonstration of networking functionality in the LPSK.

1. Functional Requirements for the System Prototype

Table 3 provides a list of functional system requirements (SR) for the system

prototype. The set of requirements ensure that the working prototype is able to generate

and handle IP packets. In order to achieve such requirements, an IP protocol stack (SR1-3

and SR2-3) must be in place. The requirements for the IP protocol stack not only must be

able to encapsulate transport layer data and demultiplex Ethernet data, it must also be

 24

able to provide other functions. The set of functional requirements for an IP protocol

stack are listed in Table 4 and will be explained next.

Requirement
No.

Functional Requirements for System Prototype

SR1 Generation of IP packets
SR1-1 The system shall allow users to generate IP packets
SR1-2 The system shall allow users to send IP packets to remote hosts

SR1-3
The system shall provide an IP protocol stack to encapsulate data in
an Ethernet frame

SR2 Handling of IP packets
SR2-1 The system shall allow users to receive IP packets from remote hosts
SR2-2 The system shall process received IP packets

SR2-3
The system shall provide an IP protocol stack to demultiplex data in
an Ethernet frame

Table 3. Functional requirements for the system prototype

2. Functional Requirements for the IP Protocol Stack

The high level functional requirements (FR) for the IP protocol stack are shown in

Table 4. Functions for the IP protocol stack can be divided into two groups: (FR1) those

providing services to other protocols and (FR2) those providing services to end-users

[19]. However, the IP protocol stack will not include functionality to support the full

TCP/IP protocol suite. It will only focus on Network layer and Ethernet layer

functionality. FR1 can be subcategorized as FR1-1 and FR1-2 to represent Network layer

services and Ethernet layer services, respectively. As for FR2, there are many useful end

users services, however, since the project only extends up to the network layer in the

protocol stack, the applicable services are limited to those that do not require the

transport layer protocol. A ping application is a suitable choice because it does not

require TCP or UDP of the transport layer. However ping requires ICMP, which is part of

the network layer. The requirement for the IP protocol stack to support ping is denoted by

FR2-1.

 25

Requirement
No.

Functional Requirements for the IP Protocol Stack

FR1
IP protocol stack shall provide services to the Network protocol layer
and the Ethernet protocol layer

FR1-1 IP protocol stack shall provide Network layer services
FR1-2 IP protocol stack shall provide Ethernet layer services
FR2 IP protocol stack shall provide services to end users
FR2-1 IP protocol stack shall support the ping application

Table 4. Functional requirements for the IP protocol stack

The functional requirements of the network layer services provided by the IP

protocol stack can be further expanded into requirements FR1-1-1 to FR1-1-4. They are

listed in Table 5. The protocols required in the network layer are Internet Protocol (IP)

and Internet Control Message Protocol (ICMP). Only support for IP version 4 (IPv4) and

ICMP version 4 (ICMPv4) are considered. Formatting of data encapsulation for IP

datagrams is supported in the network layer. The format of the IP header and the IP

datagram is based on the formats shown in Figure 9 and Figure 3 (see Chapter II). The

routing functionality provided by the protocol stack will select the network interface that

is on the same network as the destination host in a networked environment.

Requirement
No.

Functional Requirements for Network Layer Services (FR1-1)

FR1-1-1 IP protocol stack shall support IP addressing (IPv4)

FR1-1-2
IP protocol stack shall support IP datagram data encapsulation and
formatting

FR1-1-3 IP protocol stack shall provide routing services

FR1-1-4
IP protocol stack shall support Internet Control Message Protocol
(ICMP) version 4

Table 5. Functional requirements for network layer services (FR1-1)

For Ethernet layer services, the expanded set of functional requirements to be

provided by the IP protocol stack are listed in Table 6. Address Resolution Protocol

 26

(ARP) is supported by the IP protocol stack. The format of encapsulation of information

into Ethernet frames shall follow the requirements in RFC894 as shown in Figure 13 (see

Chapter II).

Requirement
No.

Functional Requirements for Ethernet Layer Services (FR1-2)

FR1-2-1
IP protocol stack shall provide services for Address Resolution
Protocol (ARP)

FR1-2-1-1
IP protocol stack shall allow processes to send ARP request and
reply packets

FR1-2-1-2
IP protocol stack shall allow processes to receive ARP request and
reply packets

FR1-2-1-3
IP protocol stack shall allow processes to update the local ARP
cache

FR1-2-2 IP protocol stack shall support Ethernet Encapsulation (RFC 894)

Table 6. Functional requirements for ethernet layer services (FR1-2)

The IP protocol stack shall support the ping application (See Table 4). The

requirements for the IP protocol stack to handle the ping application are listed in Table 7.

For the ping application to work successfully, it must be able to ping a remote host and

receive ping replies from that host. The IP protocol stack shall be able to process the ping

packets and send appropriate ping replies to the originating host.

Requirement No. Functional Requirements for Ping Application (FR2-1)

FR2-1-1 IP protocol stack shall allow users to ping remote hosts
FR2-1-2 IP protocol stack shall process ping packets
FR2-1-3 IP protocol stack shall allow users to receive ping replies from remote hosts

Table 7. Functional requirements for ping application (FR2-1)

 27

B. DESIGN CONSIDERATIONS

This section first describes a high level design for the IP protocol stack. Some

design considerations such as how the protocol stack should be organized in the LPSK,

and the layering design methodology used in the LPSK are also discussed. A comparison

of two open source TCP/IP protocol stacks, namely MicroIP (uIP) and Lightweight IP

(LWIP), is provided. In particular, LWIP is selected over uIP and some of LWIP’s

relevant data structures and function calls are highlighted. Lastly, the final design with

some modifications to the LWIP design is explained.

1. High Level IP Protocol Stack Design

From the functional requirements described in Section A, a high level design of

the IP protocol stack can be envisaged in Figure 16. The IP protocol stack can be

designed so that each box represents a module and each arrow denotes the interface

necessary between modules. For example, the Ethernet layer consists of the ARP module

and the Ethernet module. There will be an interface between the ARP and Ethernet

module within the Ethernet layer. Outside the Ethernet layer, there will be an interface

between IP module in the Network layer and the Ethernet layer. For the ping application

to work, it does not require protocols in the transport layer. The transport protocols: TCP

and UDP illustrated in the figure show that there should be an interface between the

Network layer and Transport layer, but this is beyond the scope of the current project.

The TCP and UDP modules and their interfaces between other modules and layers will

not be included in the detailed design.

 28

Figure 16. High level IP protocol stack design

2. IP Protocol Stack in the TCX LPSK

The current implementation of the TCX LPSK has the architecture shown in

Figure 17. The functions pertaining to each layer can be found in LPSK Functional

Requirement Specifications [20]. Since the overall objective of this project is to develop a

proof-of-concept prototype involving the use of an IP protocol stack, the protocol stack

can reside in any non kernel privilege levels (PL1 through PL3). To simplify the design,

the IP protocol stack will be implemented in PL3.

 29

Figure 17. Architecture for the TCX LPSK (After Figure 1 in [21])

3. Layering in the TCX LPSK

The design methodology adopted by the TCX LPSK uses modularity and

layering. This organization is illustrated notionally in Figure 18. The LPSK is

decomposed into modules and the modules are organized into ordered layers. Modules

belonging to upper layers can only make calls into modules in the lower layers. It is

important to note the usefulness of modularity in secure system design, as mentioned by

Levin et al. [22]. Therefore, for the design of the IP protocol stack, the concept of

layering will be applied to the modules in the network stack.

Figure 18. Modules and layering in the TCX LPSK

 30

4. Open Source Network Protocol Stacks

To develop a network IP protocol stack, one can either build everything from

scratch or search for a suitable product that can be adapted to match the requirements.

Open source is a better consideration over proprietary off-the-shelf software solutions

due to the fact that source code is usually released for open source implementations.

Being able to access the source code allows modifications to be made such that there is

flexibility in customizing existing code to better suit the requirements. The approach

taken in this project is to examine relevant software in the open source community.

Fortunately, there are various software network protocol stacks available as open-source

implementations.

The four open-source network protocol stacks evaluated are microIP (uIP) [23],

Lightweight IP (LWIP) [24], TinyTCP [25], uC/IP [26]. The protocol stacks were

evaluated based on the criteria listed in Table 8. The minimum requirements that need to

be satisfied are that the protocol stack must be able to run in a Linux environment and

support IP, ICMP, ARP, Ethernet and IPv4. Only uIP, LWIP and uC/IP are able to meet

the minimum requirements. Other selection criteria include availability of source code,

documentation, an active user community and sample applications, the ability to support

IPv6, as well as the TCP and UDP protocols. Although uC/IP meets the minimum

requirement, it fails to have any documentation of its source code. uC/IP is unable to

support IPv6 and does not have many active users. Out of the four network protocol

stacks, it is clear that uIP and LWIP are the two most suitable protocol stacks to be used

in this project.

 31

 uIP LWIP TinyTCP uC/IP
Supports TCP    

Supports UDP    

Supports ICMP    

Supports IP    

Supports ARP    

Supports Ethernet    

Support IPv4    

Support IPv6    

Supports Linux environment    

APIs / Source codes available    

Documentation available    

Active users community    

Include sample applications   Few Few
Latest version no. 1.0.0 1.4.0 2 1.0.3

Last version date (mm-yy) Jun-07 Jul-10 Sep-97 Jan-02

Table 8. Evaluation criteria of network protocol stacks

Further comparisons of uIP and LWIP are listed in Table 9. LWIP is a better

choice over uIP, as it has other features that provide leeway for extending the capability

of this project. For instance, LWIP supports the UDP protocol and multiple network

interfaces whereas uIP does not. Moreover, TCP features like TCP sliding window,

congestion control, out-of-sequence data are supported in LWIP but not in uIP. If future

expansion of this project is to include the TCP protocol, LWIP is truly the best ultimate

choice. In addition, LWIP is selected on the merit that it is still under active development.

The latest update for LWIP was released in Jul 2010. As for uIP, the last update was in

Jun 2007. Although LWIP requires greater amount of memory to work with as compared

with uIP, memory is not an issue, as existing systems running the LPSK have 512 MB of

memory, which is more than sufficient for LWIP. Further analysis of the LWIP

architecture is necessary to determine if it can fulfill the requirements and if it can be

integrated into the TCX LPSK. This appears in the next section.

 32

Feature uIP LWIP
IP and TCP checksums  
IP fragment reassembly  
IP options
Multiple interfaces 
UDP 
Multiple TCP connections  
TCP options  
Variable TCP MSS  
RTT estimation  
TCP flow control  
Sliding TCP window 

TCP congestion control
Not

needed


Out-of-sequence TCP data 
TCP urgent data  
Data buffered for rexmit 

Table 9. TCP/IP features implemented by uIP and LWIP (From Table 1 in [27])

5. Lightweight Internet Protocol (LWIP)

The design of LWIP is based on the layered characteristics of each protocol in the

TCP/IP suite. Each protocol is implemented separately as a module, and has a few

functions to provide interfaces to other protocols. Nevertheless, Dunkels stated that the

main purpose of implementing LWIP is to “reduce memory usage and code size”, and

“improve performance in terms of processing speed and memory usage” [27]. If the

protocols are implemented in a strictly layered manner, there will be communication

overhead, which will degrade the overall performance [28]. As such, Dunkels claimed

that LWIP is designed to have “a more relaxed scheme for communication” between

layers through the use of its “buffer handling mechanisms” [27]. Some of LWIP’s data

structures and functions are relevant to the requirements of this thesis. They are identified

and discussed in the next section.

 33

6. LWIP Data Structures

Instead of building from scratch, some of the data structures in LWIP can be

reused to achieve our objectives. The data structures are as follows:

a. Packet Buffer (pbuf)

LWIP uses a packet buffer (pbuf) to represent a packet. The description of

each field of the pbuf’s data structure is shown in Table 10. There are three types of pbuf:

PBUF_RAM, PBUF_ROM, and PBUF_POOL [27]. For PBUF_RAM pbuf, memory is

allocated to store application data as well as header information of IP packets. It is

commonly used by applications that send dynamically generated data. PBUF_ROM is

used when the application data is stored in a memory location managed by the

application. The PBUF_POOL pbuf is allocated from a pool of fixed size pbufs. It is

mainly used by network device drivers due to its fast operation. Pbufs can be linked

together in a list and a chain of pbufs can be comprised of different types of pbufs.

pbuf
Type Name Description

struct pbuf* next
Next pbuf of a linked
pbuf chain

void * payload
Actual data in the
buffer

unsigned short tot_len
Total length of this
buffer and all next
buffers in the chain

unsigned short len Length of this buffer
unsigned char type Buffer type
unsigned char flags Miscellanous flags

unsigned short ref
No. of pointers that
reference this pbuf

Table 10. Packet buffer data structure (From [27])

 34

b. Network Interface (netif)

LWIP represents device drivers for network hardware using a network

interface (netif) structure [27]. Descriptions of the fields in the netif data structure are

given in Table 11. Network interfaces are globally stored in a linked list. Each netif has

three important functions: input, output, linkoutput. The input function is called when a

packet is received. It is used to pass a packet from the Ethernet layer to the upper layer.

The output function sits between the network layer and the network interface layer. When

sending a packet to a remote host, the output function is called by the IP module in order

for the packet to traverse from the network layer to the network interface layer. The

linkoutput function is an interface between the network interface layer and the physical

device. It is called by the ARP module to send a packet to the physical device.

netif
Type Name Description

struct netif* next Next netif in linked list
ip_addr_t ip_addr IP address of network interface

ip_addr_t netmask Network address of network interface

ip_addr_t gw Gateway
netif_input_fn input input function
netif_output_fn output output function
netif_linkoutput_fn linkoutput output function on link medium
void* state state information for device
unsigned short mtu Max transfer unit (in bytes)

unsigned char hwaddr_len No. of bytes used in hardware address

unsigned
char[HWADDR_LEN]

hwaddr Hardware address of this interface

unsigned char flags Flags for this interface
char [2] name Name of interface (eg. et)
unsigned char num No. of this interface

Table 11. Network interface data structure (From [29])

 35

c. ICMP Echo Header (icmp_echo_hdr)

The ICMP echo header data structure is used to represent the ICMP header

information described in Figure 12 (see Chapter II). The details of the fields of the data

structure are listed in Table 12.

icmp_echo_hdr
Type Name Description

unsigned
char

type ICMP type

unsigned
char

code ICMP code

unsigned
short

chksum Checksum

unsigned
short

id Identifier

unsigned
short

seqno Sequence number

Table 12. ICMP echo header data structure (From source code in [30])

d. IP Header (ip_hdr)

The details of the IP header data structure are shown in Table 13. The data

structure is used to represent IP header information shown in Figure 9 (see Chapter II).

 36

ip_hdr
Type Name Description

unsigned
char

v_hl_tos
Version / Header Length / Type
of service

unsigned
short

len Total length

unsigned
short

id Identification

unsigned
short

offset Fragmentation offset

unsigned
char

ttl Time to live

unsigned
char

proto Protocol type

unsigned
short

chksum Checksum

ip_addr_t src Source IP address
ip_addr_t dest Destination IP address

Table 13. IP header data structure (From source code in [30])

e. Ethernet Header (eth_hdr)

The Ethernet header (eth_hdr) data structure represents the Ethernet

header information described in Figure 13 (see Chapter II). The description of the data

structure is listed in Table 14.

eth_hdr
Type Name Description

eth_addr dest
Destination Ethernet
Address

eth_addr src Source Ethernet Address
unsigned short type Ethernet type

Table 14. Ethernet header data structure (From source code in [30])

 37

f. ARP Header (etharp_hdr)

The ARP header (etharp_hdr) data structure represents ARP packet format

information shown in Figure 14 (see Chapter II). The details of the data structure are

described in Table 15.

etharp_hdr
Type Name Description

unsigned
short

hwtype Hardware type

unsigned
short

proto Protocol type

unsigned
char

hwlen Hardware address length

unsigned
char

protolen Protocol address length

unsigned
short

opcode Operation code

eth_addr shwaddr Source hardware address
ip_addr_t sipaddr Source IP address

eth_addr dhwaddr
Destination hardware
address

ip_addr_t dipaddr Destination IP address

Table 15. ARP header data structure (From source code in [30])

7. LWIP Functions and Function Call Flow

The LWIP functions to be used in this project are summarized in Table 16. For IP

Processing, the IP module implemented in LWIP can only send, receive and forward

packets. It does not have the capability to process fragmented packets and IP options.

Sending packets is handled by the ip_output() function. The function finds the

appropriate network interface (using ip_route()), determines the source and destination

IP address, and subsequently calls ip_output_if() to construct the IP header and send the

packet on the network interface using the netif->output() function call. The netif-

>output() function can be assigned to call etharp_output() of ARP module. The

 38

etharp_output() function resolves and fills in the Ethernet address of the outgoing IP

packet, and eventually sends the IP packet through the netif->linkouput() function.

Incoming packets are handled by the netif->input() function. The netif->input()

function can be assigned to call ethernet_input() function. The ethernet_input() function

processes incoming Ethernet frames. Depending on the type of Ethernet frame it receives,

the function will call ip_input() if the Ethernet frame is an IP type frame, or it calls

etharp_arp_input() if the Ethernet frame is of the ARP type. The function

etharp_arp_input() handles ARP requests and ARP replies. If an ARP request is

received, it responds with an ARP reply. If an ARP reply is received, it updates the ARP

cache. Upon receiving a packet, the ip_input() function will make a function call to an

appropriate protocol in the upper layer, depending on the protocol type of the IP

datagram. If the IP protocol is of an ICMP type, then ip_input() will call the function

icmp_input(). The function icmp_input() handles incoming ICMP packets. The current

implementation can only process ICMP echo requests and send out echo replies.

 39

Function Name Description
Find appropriate network interface
Ensure that all IP header fields are filled
Construct IP header and compute IP header checksum

ip_output()

Determine source and destination IP addresses
Check IP version, header length
Compute header checksum ip_input()
Check destination IP address

ip_route() Find appropriate network interface for a given IP address
ip_output_if() Sends IP packet on a network interface

Decrease TTL field
ip_forward()

If TTL = 0, send ICMP error message

etharp_output() Resolve and fills in Ethernet address header for outgoing IP packets
Processes received Ethernet frames.
Passes frame to ARP module if it receives ARP frame ethernet_input()
Passes frame to IP module if it receives IP ethernet frame
Responds to ARP requests

etharp_arp_input()
Updates ARP cache if it receives ARP replies

Process icmp echo request
icmp_input()

Sends out echo response
etharp_request() Sends ARP request

etharp_send_ip() Sends IP packet on a network using netif->linkoutput.

Table 16. LWIP functions (From [24])

The flow of function calls for sending and receiving IP packets in LWIP can be

best illustrated with a diagram shown in Figure 19. The sequence of function calls when

sending IP packets is marked from 1a to 1f. For incoming packets, the sequence of

function calls is indicated from 2a to 2b. Step 0 denotes a user process or user

application. For instance, when a user application such as ping sends a ping request to a

remote host, the data is first handled by the raw_sendto() function. It calls ip_route() to

determine the network interface based on the destination IP address, and then calls the

ip_output_if() function to send the IP packet on the network interface. The ip_output_if()

function next calls the netif->output() function, which finally calls netif->linkoutput()to

send the IP packet through the link. On receiving incoming packets, the netif->input()

 40

function determines whether to call etharp_arp_input() or ip_input(), based on the type

of ethernet frame received. If an Ethernet IP frame is received, then the ip_input()

function will make an up call to icmp_input() to process ICMP packet. If the

icmp_input() function receives an ICMP echo reply, it may signal to the application by

calling a function in the user application. The flow sequence for sending and receiving

packets is summarized in Figure 20 and Table 17.

 41

Figure 19. LWIP function call flow for sending and receiving IP packets

 42

Figure 20. Flow sequence for sending and receiving IP packets

 43

Action Scenario Flow Sequence
Sending Packet Destination MAC address is not in ARP cache 1-2-3-4-5-6-7-8
Sending Packet Destination MAC address is in ARP cache 1-2-3-4-5-6'-7'-8
Receiving Packet Incoming packet is ARP request packet 9-10-11-8
Receiving Packet Incoming packet is ARP reply packet 9-10-11'-7'-8
Receiving Packet Incoming packet is ICMP Echo packet 9-12-13-14-4-5'-7'-8
Receiving Packet Incoming packet is ICMP Echo Reply packet 9-12-13-14'

Receiving Packet
Incoming packet is not for host, MAC address
of host not in ARP cache

9-12-15-16-5-6-7-8

Receiving Packet
Incoming packet is not for host, MAC address
of host in ARP cache

9-12-15-16-5-6'-7'-8

Table 17. Flow sequence for sending and receiving IP packets

It can be observed from Figure 19 that sending of IP packets involves downward

function calls and receiving of IP packets required upward function calls in LWIP.

However, the upward function calls when receiving IP packets are not desired if LWIP is

to be integrated with LPSK. This is because LPSK was designed such that modules can

only make downward function calls to other modules. Therefore, in order to allow LWIP

to fulfill design criteria of the larger LPSK effort, modification of the LWIP architecture

is necessary especially for the sequence in which input functions call each other. In other

words, input functions should only make downward calls to other functions. The final

design with modifications to LWIP together with interface to LPSK functions will be

discussed next.

8. Final Design

The final design of the IP protocol stack is shown in Figure 21. The

lpsk_write_next() and lpsk_read_next() functions (represented by rectangle boxes at the

bottom of the figure) are implemented in the current LPSK to write bytes to network

devices and read bytes from network devices, respectively. Incoming Ethernet frames are

stored in a buffer, which can be polled in a first-in-first-out manner by calling

lpsk_read_next() function. Outgoing Ethernet frames can be sent to the network device

using lspk_write_next().

 44

One of the major changes between the final design and the original LWIP design

is the flow of function calls for receiving frames. Instead of the lower layer functions

calling upper layer functions as received frames are processed, the modified design

ensures that functions in the upper layers call functions in the lower layers. As an

example, when ping waits for a ping reply, it calls the recv_ping_reply() function to get

an IP packet, which is the ping reply. To be precise, the IP packet uses ICMP protocol

and the ICMP type equals Echo Reply (Type 0). Since the ping reply is an ICMP

message, the recv_ping_reply() function will subsequently call the get_icmp_packet()

function to get an IP datagram having the ICMP protocol. As such, the

get_icmp_packet() function calls the get_ip_datagram() function to get an IP datagram of

ICMP protocol type.

 45

Figure 21. IP protocol stack final design

The get_ip_datagram() function stores the IP datagram in a ip_datagram_buffer

data structure shown in Table 18. The data structure is designed to store IP datagrams of

various protocol types. An ip_datagram_buffer list will be globally defined for storing the

received IP datagram. The get_ip_datagram() function then calls the get_eth_ip_frame()

function to get an Ethernet frame, which is of IP type. When the get_eth_ip_frame()

function gets an Ethernet-IP frame, it will then call ip_input_verify() function to check

and verify the IP version, header length and checksum of the packet. The

 46

ip_input_verify() function is a modification of LWIP’s ip_input() function such that it

will not make an up call to functions handling ICMP messages. If the destination IP

address does not match the IP address of receiving host, the packet will be forwarded to

the network interface, which belongs to the same network as the destination IP address

using ip_forward() function. In order to get an Ethernet frame, the get_eth_ip_frame()

function calls get_next_frame(), which eventually calls lpsk_read_next() to get an

incoming Ethernet frame.

ip_datagram_buffer
Type Name Description

struct ip_datagram_buffer * next
Pointer to next ip_datagram_buffer
of a linked list

struct pbuf* p Packet buffer
unsigned short ip_proto_type IP Protocol Type
unsigned int len Length of IP datagram
char [4] netif_name Name of netif eg. 'eth1'

Table 18. Data structure for IP datagram buffer

When the get_next_frame() function is called, it will first get all the frames

received by the network device and store the frames in its frame buffer

(eth_frame_buffer). The eth_frame_buffer data structure for storing the incoming

Ethernet frames is shown in Table 19. An eth_frame_buffer list will be globally defined

for storing the Ethernet frames. Depending on the Ethernet type requested, the

get_next_frame() function will search through the eth_frame_buffer list and return the

ethernet frame in the input buffer passed in from its caller. For example, the

get_eth_ip_frame() will request an Ethernet frame of Ethernet-IP type from

get_next_frame() function. It will pass in an input buffer to get_next_frame() to store the

Ethernet-IP frame. Whether or not the operation is able to retrieve the required Ethernet

frame will be determined by the result code returned by get_next_frame() function.

 47

eth_frame_buffer
Type Name Description

struct eth_frame_buffer * next
Pointer to next eth_frame_buffer of
a linked list

struct pbuf* p Packet buffer
unsigned short eth_type Ethernet type
unsigned int len Length of frame
char [4] netif_name Name of netif eg. 'eth1'

Table 19. Data structure for Ethernet frame buffer

The get_next_frame() function is also designed to have the option of processing

Ethernet-ARP type frame. If this option is chosen, the get_next_frame() function will call

ethernet_input() function, which then calls the etharp_arp_input() function to handle

ARP type Ethernet frames. The etharp_arp_input() function will either send an ARP

reply if the incoming packet is an ARP request from a remote host or updates the ARP

cache if the incoming packet is an ARP reply from a remote host to the sender host.

Another change was made in relation to the processing of ARP packets during the

sending of IP packets. In the previous design, the ARP request and ARP reply are not

within the same functional flow. When the hardware address of the destination host is not

in the ARP cache of the sender host, an ARP request is sent asking for the hardware

address of the destination IP address. The sender host will receive an ARP reply in

response to the ARP request sent. For the initial design, when the sender host sends an IP

packet, it will send an ARP request if there is no hardware address based on the

destination IP address in the host ARP cache. The flow for sending IP packets starts at

the application layer and ends after the ARP request is sent and the IP packet with the

proper Ethernet header information is sent to a queue. The queued IP packet can only be

sent if the ARP cache is updated, which is done after receiving an ARP reply. To get the

ARP reply, another function flow for receiving incoming packets has to be followed. The

flow for receiving IP packet starts when lpsk_read_next() is called. In the context of the

 48

ARP protocol, the flow ends when an ARP reply is received and has triggered a function

call to update Ethernet header information with the destination hardware address before

sending out the queued IP packet.

The function flow for sending IP packets does not include the processing of

incoming ARP frames. Within this function flow, if there is an appropriate ARP entry in

the ARP cache, the flow ends after the IP packet is sent. On the other hand, if there is no

appropriate ARP entry in the ARP cache, an ARP request is sent, and the flow for

sending IP packets ends here. This is not desired because the flow has to rely on another

function flow for processing incoming ARP frames.

A change made in the final design addresses this issue and ensures that an ARP

request is replied and an IP packet is sent within a single function flow. The modification

is that after the sender host sends out an ARP request, the sending host will poll for any

incoming ARP Ethernet frames using get_eth_arp_frame() function. If it receives an

ARP request, it will send out an ARP reply and continue to poll for the next ARP

Ethernet frame until it receives its ARP reply. If it receives an ARP reply, it will update

the ARP cache, fill in the necessary Ethernet header information, and send out the IP

packet. By making sure that an ARP reply is received after an ARP request is sent, the

amended design allows IP packets to be sent within the same function flow. The function

flow for sending an IP packet is guaranteed to send an IP packet ultimately. Nevertheless,

a mechanism must be in place to ensure that the sender host is not trapped polling for an

ARP Ethernet frame if the ARP reply never reaches the sender host.

C. SUMMARY

The requirements and design considerations for implementing an IP protocol

stack in the LPSK environment were discussed in this chapter. The final design for the IP

protocol stack ironed out the issue of sending an IP packet in one function flow and

receiving an ARP reply in another function flow. IP protocol stack is implemented based

on the final design and the implementation details are discussed in the next chapter.

 49

IV. IMPLEMENTATION

This chapter describes the implementation details of the IP protocol stack for the

LPSK prototype. Section A describes the software and hardware environment used in the

development. Section B describes the methodology used to implement the IP protocol

stack.

A. DEVELOPMENT ENVIRONMENT

The implementation and testing was carried out in a virtual machine environment.

The virtualization software used was VMware Workstation version 7.1.0 [31] and was

installed on a workstation running on Intel® Core™2 Quad 3GHz Processor, with 4.0

Gigabytes RAM and using the Windows 7 Professional [32] operating system. Two

virtual machines, both running Fedora Core version 7 [33], were created. One of the

virtual machines was used for development and the other virtual machine was used for

deploying and testing the compiled binary. The IP Protocol stack was implemented as an

application executing on the LPSK. The LPSK and the IP Protocol stack were compiled

using the Open Watcom C compiler version 1.7 [34].

B. IMPLEMENTATION METHODOLOGY

This section elaborates on the approach used during the implementation of the IP

Protocol stack. Setting up the system to run Lightweight Internet Protocol (LWIP) will be

discussed first. This is followed by a description on the miscellaneous system functions

required to link the LWIP source code as well as the modifications made to the relevant

LWIP functions as listed in Table 16 (See Chapter III). The implementation details for a

ping application are discussed last.

1. Configuring the LPSK for LWIP

The source code for LWIP can be downloaded [24]. The version used in the

development is version 1.4.0.rc1. To test whether LWIP can be compiled for execution in

the LPSK context, the Makefile for compiling the LWIP files was modified. The LWIP

 50

files essential for development of the IP stack are listed in Table 20. These files have to

be included in the Makefile during compilation. Details of the changes to the Makefile

can be found in Appendix A.

File File Location
def.c core/
init.c core/
mem.c core/
memp.c core/
netif.c core/
pbuf.c core/
raw.c core/
sys.c core/
udp.c core/
timers.c core/
icmp.c core/ipv4
ip.c core/ipv4
inet.c core/ipv4
ip_addr.c core/ipv4
ip_frag.c core/ipv4
inet_chksum.c core/ipv4
etharp.c netif/

Table 20. Essential LWIP files used

2. Miscellaneous System Functions

Several additional system functions are required by LWIP in order for its code to

be linked without errors. These functions and their support categories are listed in Table

21. These functions are being implemented in another project [35]. For this development,

they are all included in a separate source file (clib.c) so that the LWIP source code

could reference these functions. Three header files: stdio.h, string.h and

stdlib.h , were created to declare the function prototypes. These were placed in the

same directory as the LPSK source files. The OpenWatcom compiler also has its own

header files for stdio.h, string.h and stdlib.h. These OpenWatcom header

 51

files have linkages to other functions and were not easily modified. It is also not a good

idea to change the OpenWatcom header files as there may be other code that has

dependencies on these header files. Instead, the Makefile file was modified to ensure

that LWIP will bypass the three header files defined by the OpenWatcom compiler and

use the new ones instead. These modifications are highlighted in Appendix A.

Function Support Category

memcpy Memory handling

memset Memory handling

strlen String handling

fflush Standard input/output

abort Process control handling

printf Standard input/ouput

Table 21. Miscellaneous system functions required by LWIP

3. Modification of LWIP Functions

Most of the LWIP functions and data structures are used without modification.

However, there are a few LWIP functions that need to be modified to be able to meet the

final IP protocol stack design objectives shown in Figure 21 (See Chapter III). As

mentioned earlier, the final design allows only functions in upper layers to call functions

in the lower layers and not in the reverse direction. There are verification functions in

ip_input() to check that the IP header is correctly formatted and handled. The basic

checks are that the IP header size must not be larger than the packet size, the checksum of

the IP header must be valid, and if the destination IP address is not for the receiving host,

the IP packet is forwarded by ip_forward(). The ip_input() function, however, is designed

to make up-calls to functions in the upper layer. For instance, when an IP packet is

handled by ip_input(), which is in the network layer, a function call is made, depending

on the type of IP protocol, to an upper layer such as the transport layer, the application

layer or even an ICMP function (layer slightly above IP). A change made to ip_input()

 52

disallows function calls to the upper layers. The basic verification functions in

ip_input()remain. The modified ip_input() is renamed as ip_input_verify() to differentiate

it from the original LWIP ip_input() function.

Another modification is to the etharp_request() function. The etharp_request()

function is called by the etharp_query() function. As sending of an IP packet is only to be

allowed in a single function flow, a slight amendment to the etharp_request() function is

to poll for a ARP reply before proceeding to send out the IP packet. If an ARP request

comes in before an ARP reply, it will respond to the request by sending back an ARP

reply. The original etharp_request() will not poll for an ARP reply and therefore another

function call flow is needed to receive ARP reply.

4. Implementation of the Ping Application

Two LPSK partitions were set up and configured to test the IP protocol stack. The

partitions are referred to as Net_Prod (Network Producer) and Net_Cons (Network

Consumer). A ping application was created in PL3 for the test. If the IP protocol stack is

successfully implemented, both partitions are able to ping each other. The existing LPSK

is able to handle the sending and receiving of data between two devices. The devices are

nonetheless virtual. The receiving and sending of data between the two devices is

implemented using lspk_read_next and lpsk_write_next functions, respectively. Each

partition will have its own device that is virtually connected to the device bound to the

other partition.

In order to simulate two devices in a networked environment, they have to be set

up to follow certain network configurations. The network topology of the two devices is

illustrated in Figure 22. The device in the Net_Prod partition is assigned with the IP

address of 192.168.0.11. Its hardware address is 06:05:04:03:02:01 and device name is

eth5. As for the device in Net_Cons partition, it is given an IP address of 192.168.0.22.

Its hardware address is 07:06:05:04:03:02 and device name is eth6. Both devices are

assigned the same network mask of 255.255.255.0 and are connected to a gateway with

an IP address of 192.168.0.1.

 53

Figure 22. Network topology for Net_Prod and Net_Cons partitions

The final design in Figure 21 (See Chapter III) highlights the additional functions

(marked in green) required in the implementation of the LPSK prototype IP protocol

stack. In the final design, various functions are allocated to particular hardware privilege

levels. However, the current implementation places all of these functions in PL3 together

with the ping application. Although they occupy the same hardware privilege level, the

functions are strictly layered and the functions are designed to only call functions

belonging to a lower layer. In order to access data at the lower layer, a function relies on

the mechanism in which buffer pointers are passed in as input parameters. Data is then

copied into these buffers so that higher layer functions can access the data. The input

parameters of these functions are listed in Table 22.

 54

Function name Input Parameters
void *const
next_frame_buffer

Pointer to store received ethernet frame

unsigned int
*num_read

Pointer to store number of bytes read

unsigned short
eth_type

Ethernet type required

void *const
netif_name

Pointer to store network interface name of
incoming packet

get_next_frame

unsigned int
process_arp_flag

Flag to determine whether or not to process
received ARP packets

void *const buffer Pointer to store received ethernet IP frame
unsigned int
*num_read

Pointer to store number of bytes read get_eth_ip_frame
void *const
netif_name

Pointer to store network interface name of
incoming packet

void *const buffer Pointer to store received IP datagram
unsigned int
*num_read

Pointer to store number of bytes read

void *const
netif_name

Pointer to store network interface name of
incoming packet

get_ip_datagram

unsigned char
ip_protocol_type

The type of IP protocol required

void *const buffer Pointer to store received ICMP packet
unsigned int
*num_read

Pointer to store number of bytes read get_icmp_packet
unsigned char
icmp_type

ICMP type required

void *const buffer Pointer to store received ping reply
recv_ping unsigned int

*num_read
Pointer to store number of bytes read

ip_addr_t
*src_ipaddr

Source IP address

ip_addr_t
*dest_ipaddr

Destination IP address send_icmp

unsigned char
icmp_type

ICMP type to send

ip_addr_t
*src_ipaddr

Source IP address
send_ping

ip_addr_t
*dest_ipaddr

Destination IP address

Table 22. Input parameters of additional functions

 55

When a function in a lower layer is called by a function in an upper layer, a return

value in the form of a result code is passed back. The return values are listed in Table 23

and are added to the existing ip_stack.h header file.

Return Values Description

LPSK_ETHTYPE_DATA
A required type of Ethernet frame is in Ethernet
frame buffer list

LPSK_ETHTYPE_ERROR
A required type of Ethernet frame is not in Ethernet
frame buffer list

LPSK_ETH_IP_DATA IP ethernet frame is in Ethernet frame buffer list
LPSK_ETH_IP_ERROR IP ethernet frame is not in Ethernet frame buffer list
LPSK_IPTYPE_DATA There is an IP datagram in IP datagram buffer list
LPSK_IPTYPE_ERROR There is no IP datagram in IP datagram buffer list
LPSK_ICMPTYPE_DATA The IP datagram matches the required ICMP type

LPSK_ICMPTYPE_ERROR
The IP datagram does not match the required ICMP
type

LPSK_ETH_ARP_DATA ARP ethernet frame is in Ethernet frame buffer list

LPSK_ETH_ARP_ERROR
ARP ethernet frame is not in Ethernet frame buffer
list

Table 23. Return values between functions

C. SUMMARY

Ping was implemented so that it can either send a ping request or receive a ping

reply, or both in the same partition. To ensure that ping and the IP protocol stack work in

the correct manner, testing is needed. The next chapter will discuss the test cases and test

results used in the testing phase of this project.

 56

THIS PAGE INTENTIONALLY LEFT BLANK

 57

V. TESTING

This chapter describes both the functional and acceptance test cases used for

testing the functionality of the TCP/IP network stack. Section A describes the functional

test cases while the acceptance test cases are presented in Section B. Section C describes

the problems found during testing. Functional test cases are used to ensure that each

function works as intended. Acceptance tests are used to verify that the overall system

behaves appropriately. Exception tests are also included to ensure that the functions

handle incorrect or out-of-range parameters properly. The results of the test cases will

also be presented in this chapter. Test procedures and the detailed test results for each test

case will appear in Appendix B.

A. FUNCTIONAL TEST CASES

The original LWIP functions required for a ping application are tested first. Other

tests include those for the functions that were created for this project or were modified

from the original LWIP implementation. These functions are highlighted in green in

Figure 21 (see Chapter III). The tests involve both functional tests and exception tests.

Functional tests will be denoted with ‘F’ in the test type, and ‘E’ will represent an

exception test. Tests for which the expected results match the actual results will be

marked ‘Pass’. The tests will be marked ‘Fail’ otherwise. Two partitions are used for the

tests. They are labeled Net_Prod and Net_Cons. Net_Prod is used primarily to generate

and send packets. Net_Cons is used mainly to receive generated packets from Net_Prod.

In some cases, the tests require Net_Cons to send packets over to Net_Prod. The IP

addresses assigned to Net_Prod and Net_Cons are 192.168.0.11 and 192.168.0.22,

respectively.

1. Original LWIP Functions

The function names in Figure 19 (see Chapter III) constitute the original LWIP

functions. They are: raw_sendto(), ip_route(), ip_output_if(), etharp_output(),

etharp_query(), etharp_request(), etharp_send_ip(), etharp_arp_input(),

ethernet_input(), ip_input(), ip_forward(), icmp_input(). The function netif->linkoutput()

 58

is an interface to lpsk_write_next() and is assigned to the function low_level_output(). A

ping application is used to test these functions. To ensure that the tests have provided

adequate coverage, statements that print the function name when it is called are added to

each function. A summary of the test and its results are listed in Table 24.

Test ID Type Test Description Expected Results
Results

(Pass/Fail)

FL1 F

Net_Prod sends a ping (ICMP
Echo packet) to Net_Cons.
Net_Cons sends a ping (ICMP
Echo packet) to Net_Prod.

Both partitions receive
ping replies from the
other partition.

Pass

Table 24. Testing original LWIP functions

2. Newly Added and Modified LWIP Functions

The new functions as well as the modified LWIP functions are listed in Table 25.

Each function is assigned a test group. Each test group, which represents a function, is

used as a form of abbreviation for the function name. For each test group, exception

testing and functional testing was conducted. The parameters used for each test and the

corresponding test results are presented in Tables 26 through 36. The expected result of

each test matches the observed result.

 59

Function New / Modifed Test Group
low_level_output new A
get_next_frame new B

get_eth_ip_frame new C
get_ip_datagram new D
get_icmp_packet new E

recv_ping new F
get_eth_arp_frame new G

ip_input_verify modified H
etharp_request modified I

send_icmp new J
send_ping new K

Table 25. Function test groupings

 60

Function Test Group A: netif->linkoutput() (Equivalent to low_level_output())

Test ID Type Parameters Expected Result
Result

(Pass/Fail)

*netif: NULL
Fa1 E

*pbuf: its payload contains Ethernet frame header

Error: Invalid parameter. netif is null. Data not
sent.

Pass

*netif: a valid netif to send from
Fa2 E

*pbuf: NULL

Error: Invalid parameter. pbuf is null. Data not
sent.

Pass

*netif: a valid netif to send from
Fa3 F

*pbuf: a valid pbuf with no payload (pbuf->length=0)

Function returns no error. The number of bytes
written = 0

Pass

*netif: a valid netif to send from
Fa4 F

*pbuf: its payload is Ethernet frame header

Data is sent without error. The number of bytes
written = 14. An Ethernet frame with the same
header information is received.

Pass

Table 26. Function test Group A – low_level_output()

 61

Function Test Group B: get_next_frame()

Test ID Type Parameters Expected Result
Result

(Pass/Fail)

*next_frame_buffer: NULL

*num_read: a valid int pointer

eth_type: ETHTYPE_ARP

*netif_name: a valid char pointer

Fb1 E

process_arp: FALSE (or 0)

Error: Invalid parameter. buffer pointer is null. Pass

*next_frame_buffer: a valid char pointer

*num_read: NULL

eth_type: ETHTYPE_ARP

*netif_name: a valid char pointer

Fb2 E

process_arp: FALSE (or 0)

Error: Invalid parameter. num_read pointer is
null.

Pass

*next_frame_buffer: a valid char pointer

*num_read: a valid int pointer

eth_type: 999 (Invalid ETHTYPE)

*netif_name: a valid char pointer

Fb3 E

process_arp: FALSE (or 0)

Error: Invalid parameter. Unknown Ethernet type
requested.

Pass

*next_frame_buffer: a valid char pointer

*num_read: a valid int pointer

eth_type: ETHTYPE_ARP

*netif_name: NULL

Fb4 E

process_arp: FALSE (or 0)

Error: Invalid parameter. netif_name pointer is
null.

Pass

Fb5 F *next_frame_buffer: a valid char pointer Precondition: An Ethernet ARP frame is sent Pass

 62

*num_read: a valid int pointer

eth_type: ETHTYPE_ARP

*netif_name: a valid char pointer

process_arp: FALSE (or 0)

without error.

Expected: The ARP frame is added to the
Ethernet frame buffer list. The ARP frame is
retrieved but not processed.

*next_frame_buffer: a valid char pointer

*num_read: a valid int pointer

eth_type: ETHTYPE_ARP

*netif_name: a valid char pointer
Fb6 F

process_arp:
TRUE (or 1)

Precondition: An Ethernet ARP frame is sent
without error.

Expected: No ARP frame is added to the Ethernet
frame buffer list. ethernet_input() is called to
process the Ethernet ARP frame. An ARP frame
is not returned in next_frame_buffer.

Pass

*next_frame_buffer: a valid char pointer

*num_read: a valid int pointer

eth_type: ETHTYPE_IP

*netif_name: a valid char pointer Fb7 F

process_arp: FALSE (or 0)

Precondition: One Ethernet ARP frame and one
Ethernet IP frame are sent without error.

Expected: Both Ethernet ARP and IP frames are
added to Ethernet frame buffer list. An Ethernet
IP frame is retrieved. ethernet_input() is NOT
called to process Ethernet ARP frame.

Pass

*next_frame_buffer: a valid char pointer

*num_read: a valid int pointer

eth_type: ETHTYPE_IP

*netif_name: a valid char pointer Fb8 F

process_arp: TRUE (or 1)

Precondition: One Ethernet ARP frame and one
Ethernet IP frame are sent without error.

Expected: ethernet_input() is called to process
the Ethernet ARP frame. Only an Ethernet IP
frame is added to the Ethernet frame buffer list.
The Ethernet IP frame is returned in
next_frame_buffer.

Pass

Table 27. Function test Group B – get_next_frame()

 63

Function Test Group C: get_eth_ip_frame()

Test ID Type Parameters Expected Result
Result

(Pass/Fail)

*buffer: NULL

*num_read: a valid int pointer Fc1 E

*netif_name: a valid char pointer

Error: Invalid parameter. buffer pointer is null. Pass

*buffer: a valid char pointer

*num_read: NULL Fc2 E

*netif_name: a valid char pointer

Error: Invalid parameter. num_read pointer is
null.

Pass

*buffer: a valid char pointer

*num_read: a valid int pointer Fc3 E

*netif_name: NULL

Error: Invalid parameter. netif_name pointer is
null.

Pass

*buffer: a valid char pointer

*num_read: a valid int pointer

Fc4 F

*netif_name: a valid char pointer

Precondition: One Ethernet ARP frame and one
Ethernet IP frame are sent without error.

Expected: ethernet_input() is called to process the
Ethernet ARP frame. Only the Ethernet IP frame
is added to the Ethernet frame buffer list.
ip_input_verify() is called to process the IP frame.
The IP header information of the returned buffer
is displayed.

Pass

Table 28. Function test Group C – get_eth_ip_frame()

 64

Function Test Group D: get_ip_datagram()

Test ID Type Parameters Expected Result
Result

(Pass/Fail)

*buffer: NULL

*num_read: a valid int pointer

*netif_name: a valid char pointer Fd1 E

ip_protocol_type
: IP_PROTO_ICMP

Error: Invalid parameter. buffer pointer is null. Pass

*buffer: a valid char pointer

*num_read: NULL

*netif_name: a valid char pointer Fd2 E

ip_protocol_type
: IP_PROTO_ICMP

Error: Invalid parameter. num_read pointer is null. Pass

*buffer: a valid char pointer

*num_read: a valid int pointer

*netif_name: NULL Fd3 E

ip_protocol_type
: IP_PROTO_ICMP

Error: Invalid parameter. netif_name pointer is null. Pass

*buffer: a valid char pointer

*num_read: a valid int pointer

*netif_name: a valid char pointer Fd4 E

ip_protocol_type
:
11 (Invalid IP Protocol
Type)

Error: Invalid parameter. Unknown IP Protocol type. Pass

*buffer: a valid char pointer Fd5 F

*num_read: a valid int pointer

Precondition: One Ethernet ARP frame and one Ethernet
IP frame are sent without error. The protocol type of the

Pass

 65

*netif_name: a valid char pointer
ip_protocol_type

:
IP_PROTO_ICMP

IP datagram is UDP.

Expected: ethernet_input() is called to process the
Ethernet ARP frame. Only the Ethernet IP frame is added
to the Ethernet frame buffer list. ip_input_verify() is called
to process the IP frame. The received Ethernet IP frame is
of the UDP protocol type, but the protocol type requested
is ICMP, hence there is no matching Ethernet IP frame of
ICMP type.

*buffer: a valid char pointer

*num_read: a valid int pointer

*netif_name: a valid char pointer

Fd6 F
ip_protocol_type

:
IP_PROTO_UDP

Precondition: One Ethernet ARP frame and one Ethernet
IP frame are sent without error. The protocol type of the
IP datagram is UDP.

Expected: ethernet_input() is called to process the
Ethernet ARP frame. Only the Ethernet IP frame is added
to the Ethernet frame buffer list. ip_input_verify() is called
to process the IP frame. A matching Ethernet IP frame of
UDP type is returned. The IP header information of the
returned buffer is displayed.

Pass

Table 29. Function test Group D – get_ip_datagram()

 66

Function Test Group E: get_icmp_packet()

Test ID Type Parameters Expected Result
Result

(Pass/Fail)

*buffer: NULL

*num_read: a valid int pointer Fe1 E

icmp_type: ICMP_ECHO

Error: Invalid parameter. buffer pointer is null. Pass

*buffer: a valid char pointer

*num_read: NULL Fe2 E

icmp_type: ICMP_ECHO

Error: Invalid parameter. num_read pointer is null. Pass

*buffer: a valid char pointer

*num_read: a valid int pointer Fe3 E

icmp_type: ICMP_TE (Other ICMP type)

Error: Invalid parameter. Unknown ICMP type. Pass

*buffer: a valid char pointer

*num_read: a valid int pointer

Fe4 F
icmp_type: ICMP_ECHO

Precondition: One Ethernet IP (ICMP Echo Type) frame is sent
without error.

Expected: The Ethernet IP frame is added to the Ethernet frame
buffer list. ip_input_verify() is called to process the IP frame. A
matching Ethernet IP frame of ICMP type is returned. The IP
header and ICMP header information of the returned buffer are
displayed.

Pass

*buffer: a valid char pointer Fe5 F

*num_read: a valid int pointer

Precondition: One Ethernet IP (ICMP Echo Type) frame is sent
without error. Sending host is not configured to respond to ARP

Pass

 67

icmp_type: ICMP_ER (ER: Echo Reply) packets.

Expected: The Ethernet IP frame is added to the Ethernet frame
buffer list. ip_input_verify() is called to process the IP frame.
icmp_input() is called to handle the ICMP message. An
unresolved ARP request return code is expected since the sender
host is not set up to respond to ARP.

*buffer: a valid char pointer

*num_read: a valid int pointer

Fe6 F

icmp_type: ICMP_ER (ER: Echo Reply)

Precondition: One Ethernet IP (ICMP Echo Reply Type) frame is
sent without error. Identifier for ICMP Echo reply message
different from destination host.

Expected: The Ethernet IP frame is added to the Ethernet frame
buffer list. ip_input_verify() is called to process the IP frame. An
Ethernet IP frame of ICMP Echo Reply type is returned. A
warning message that the identifier of the ICMP Echo reply is
mismatched is displayed. The IP header and ICMP header
information of the returned buffer are displayed.

Pass

*buffer: a valid char pointer

*num_read: a valid int pointer

Fe7 F

icmp_type: ICMP_ER (ER: Echo Reply)

Precondition: One Ethernet IP (ICMP Echo Reply Type) frame is
sent without error. Identifier for ICMP Echo reply message is the
same as destination host.

Expected: The Ethernet IP frame is added to the Ethernet frame
buffer list. ip_input_verify() is called to process the IP frame. An
Ethernet IP frame of ICMP Echo Reply type is returned. A
message that affirms that the identifier of ICMP Echo reply
matches is displayed. The IP header and ICMP header
information of the returned buffer are displayed.

Pass

Table 30. Function test Group E – get_icmp_packet()

 68

Function Test Group F: recv_ping()

Test ID Type Parameters Expected Result
Result

(Pass/Fail)

*buffer: NULL
Ff1 E

*num_read: a valid int pointer
Error: Invalid parameter. buffer pointer is null. Pass

*buffer: a valid char pointer
Ff2 E

*num_read: NULL
Error: Invalid parameter. num_read is null. Pass

*buffer: a valid char pointer

Ff3 F

*num_read: a valid int pointer

Precondition: One Ethernet IP (ICMP Echo
Reply Type) frame is sent without error. The
Identifier for the ICMP Echo reply message is
the same as that of the destination host.

Expected: The Ethernet IP frame is added to
Ethernet frame buffer list. ip_input_verify() is
called to process IP frame. An Ethernet IP frame
of ICMP Echo Reply type is returned. A
message that affirms that the identifier of the
ICMP Echo reply matches is displayed. The IP
header and ICMP header information of the
returned buffer are displayed.

Pass

Table 31. Function test Group F – recv_ping()

 69

Function Test Group G: get_eth_arp_frame()

Test ID Type Parameters Expected Result
Result

(Pass/Fail)

Fg1 F (none)

Precondition: One Ethernet ARP frame and one Ethernet IP frame
are sent without error.

Expected: Both the Ethernet ARP and IP frames are added to the
Ethernet frame buffer list. The Ethernet IP frame is retrieved.
ethernet_input() is not called in get_next_frame() but it is called in
get_eth_arp_frame() to process Ethernet ARP frame.

Pass

Table 32. Function test Group G – get_eth_arp_frame()

 70

Function Test Group H: ip_input_verify()

Test ID Type Parameters Expected Result
Result

(Pass/Fail)
*pbuf: NULL

Fh1 E *netif: a valid netif pointer Error: Invalid parameter. pbuf pointer is null. Pass

*pbuf: a valid pbuf pointer
Fh2 E

*netif: NULL
Error: Invalid parameter. netif pointer is null. Pass

*pbuf: a valid pbuf pointer

Fh3 E

*netif: a valid netif pointer Precondition: One Ethernet IP frame with an IP header length
greater than pbuf size is sent.

Expected: The IP header length does not fit in pbuf length. The
IP packet is dropped.

Pass

*pbuf: a valid pbuf pointer

Fh4 E
*netif: a valid netif pointer

Precondition: One Ethernet IP frame with an IP total length
greater than pbuf size is sent.

Expected: The IP total length does not fit in pbuf length. The IP
packet is dropped.

Pass

*pbuf: a valid pbuf pointer

Fh5 E

*netif: a valid netif pointer

Precondition: One Ethernet IP frame of destination IP address
192.168.0.99 (other IP address in same network) is sent.

Expected: The IP packet will be forwarded using ip_forward()
and since there is no device having such an IP address, there will
not be any ARP reply from the destination host. Hence the
packet is dropped.

Pass

 71

*pbuf: a valid pbuf pointer

Fh6 E

*netif: a valid netif pointer

Precondition: One Ethernet IP frame of destination IP address
192.168.2.111 (an IP address in a different network) is sent.

Expected: An IP packet will be forwarded using ip_forward()
and since there is no network interface in the same network,
there will be no forwarding route for the destination IP address.
The packet is dropped.

Pass

*pbuf: a valid pbuf pointer

Fh7 E *netif: a valid netif pointer

Precondition: One Ethernet IP frame with invalid IP header
chksum is sent.

Expected: The checksum failed. The IP packet is dropped.

Pass

*pbuf: a valid pbuf pointer

Fh8 F

*netif: a valid netif pointer

Precondition: One Ethernet IP frame with IP header length and
IP total length not greater than pbuf size, that has a valid
checksum, and is for destination host 192.168.0.22 is sent.

Expected: IP packet is checked successfully by
ip_input_verify().

Pass

Table 33. Function test Group H – ip_input_verify()

 72

Function Test Group I: etharp_request()

Test ID Type Parameters Expected Result
Result

(Pass/Fail)
*netif: NULL

Fi1 E

*ipaddr: a valid ipaddr pointer

Expected: Error: Invalid parameter. Netif pointer is null. Pass

*netif: a valid netif pointer

Fi2 E

*ipaddr: NULL

Expected: Error: Invalid parameter. IP address is null. Pass

*netif: a valid netif pointer

Fi3 F

*ipaddr: a valid ipaddr pointer
(ipaddr 192.168.0.22)

Precondition: etharp_request() is called from the Net_Prod
partition. get_eth_arp_frame() is called from the Net_Cons
partition to process incoming ARP frames.

Expected: The Net_Prod partition sends an ARP request and
waits for its ARP reply. The ARP cache table in the Net_Prod
partition is updated when it receives an ARP reply. The
Net_Cons partition receives an ARP request from Net_Prod,
adds an entry to its ARP cache table and sends an ARP reply
back to Net_Prod.

Pass

Table 34. Function test Group I – etharp_request()

 73

Function Test Group J: send_icmp()

Test ID Type Parameters Expected Result
Result

(Pass/Fail)

src_ipaddr: 192.168.0.11

dest_ipaddr: 192.168.0.22
Fj1 E icmp_type: ICMP_TE (Other ICMP type)

Precondition: The Net_Cons partition is set up to listen for
an ICMP Echo message.

Expected: Error: Invalid parameter: This ICMP type is not
supported. The only current support is for ICMP Echo
messages.

Pass

src_ipaddr: 192.168.0.11

dest_ipaddr: NULL
icmp_type: ICMP_ECHO Fj2 E

Precondition: The Net_Cons partition is set up to listen for
an ICMP Echo message.

Expected: The Destination IP address is 0.0.0.0. There is no
network interface that belongs to same network as the
Destination IP address 0.0.0.0, hence there is no route to the
Destination IP address.

Pass

src_ipaddr: 192.168.0.11

dest_ipaddr: 192.168.0.22

Fj3 E
icmp_type: ICMP_ER (ER: Echo Reply)

Precondition: The Net_Cons partition is set up to listen for
an ICMP Echo message.

Expected: Error: Invalid parameter: This ICMP type is not
supported. The only current support is for ICMP Echo
messages.

Pass

src_ipaddr: 0.0.0.0 Fj4 F

dest_ipaddr: 192.168.0.22

Precondition: The Net_Cons partition is set up to listen for
an ICMP Echo message.

Pass

 74

icmp_type: ICMP_ECHO
Expected: Source IP address is 0.0.0.0. raw_sendto() is
called to send ICMP Echo to the destination IP address
192.168.0.22. raw_sendto() checks for a network interface
from which to send the packet out. The IP address of netif
is used as the source IP address instead of 0.0.0.0

src_ipaddr: 192.168.0.11

dest_ipaddr: 192.168.0.22

Fj5 F
icmp_type: ICMP_ECHO

Precondition: The Net_Cons partition is set up to listen for
an ICMP Echo message.

Expected: An ICMP Echo Type message is sent from the IP
address 192.168.0.11 to 192.168.0.22. An ICMP Echo
Reply is sent back from 192.168.0.22. An ARP Reply is
first returned to the host at 192.168.0.11 before the IP
datagram is processed by the host at 192.168.0.22

Pass

Table 35. Function test Group J – send_icmp()

 75

Function Test Group K: send_ping()

Test ID Type Parameters Expected Result
Result

(Pass/Fail)

Fk1 F dest_ipaddr: 192.168.0.22

Precondition: The Net_Cons partition is set up to listen for an ICMP
Echo message.

Expected: An ICMP Echo Type message is sent from IP address
192.168.0.11 to 192.168.0.22. An ICMP Echo Reply is sent back from
192.168.0.22. An ARP Reply is first returned to host at 192.168.0.11
before an IP datagram is processed by the host at 192.168.0.22

Pass

Fk2 F dest_ipaddr:

192.168.0.99
(other address
in same
network)

Precondition: The Net_Cons partition is set up to listen for an ICMP
Echo message.

Expected: There is no device on the same network with IP address
192.168.0.99, hence the ARP request will time out and the packet is
dropped.

Pass

 76

Fk3 F dest_ipaddr:
192.168.0.11
(its own IP
address)

Precondition: netif in the Net_Prod partition is configured to be used as
a loopback device (minor_device[2]) to send and receive. Net_Prod
will send and receive ping from same partition.

Expected: Host 192.168.0.11 can send and receive ping (Echo and
Echo Reply) to and from itself.

Pass

Fk4 F dest_ipaddr:

192.168.2.111
(IP address in
different
network)

Precondition: The Net_Cons partition is set up to listen for ICMP Echo
message.

Expected: There is no network interface belonging to the same network
as 192.168.2.111, hence the packet is dropped.

Pass

Table 36. Function test Group K – send_ping()

 77

B. ACCEPTANCE TESTS

A ping application was developed for testing the overall network stack

implemented in the LPSK. Two partitions were used for the ping application. The two

partitions were named: Net_Prod and Net_Cons. Net_Prod was given an IP address of

192.168.0.11 while Net_Cons was assigned an IP address of 192.168.0.22. Depending on

the objective of the acceptance test, each partition was configured accordingly.

1. Acceptance Test A1 and Results

The purpose of test A1 is to verify that when a partition (source host) sends an

ICMP Echo request to another partition (remote host), it will receive an ICMP Echo

Reply from the remote host. This test also ensures that the remote host will process

incoming IP packets. If the remote host receives an ICMP Echo request, it will send an

ICMP Echo reply back to the host requesting it. One partition (Net_Prod) is set up to

generate ping packets and to wait for ping replies. The other partition (Net_Cons) serves

as an active host that waits for incoming ping packets. Net_Prod will ping Net_Cons and

wait for a reply from Net_Cons. Upon receiving a Ping (ICMP Echo) packet, Net_Cons

will reply with an ICMP Echo Reply packet. The result of the test is shown in Table 37.

Test ID Type Test Description Expected Results
Result

(Pass/Fail)

A1 F
Net_Prod sends a ping
(ICMP Echo packet) to
Net_Cons.

Net_Prod sends a ping and
receives a ping reply from
Net_Cons.

Pass

Table 37. Acceptance test A1: Sending ICMP Echo from one host

2. Acceptance Test A2 and Results

The objective of test A2 is to verify that both partitions can send, receive and

process ICMP packets. Similar to Net_Prod in test A1, Net_Cons is configured to send

 78

ICMP Echo to Net_Prod and to wait for ICMP Echo Reply from Net_Prod. Net_Cons is

expected to receive an ICMP Echo from Net_Prod and send an ICMP Echo Reply back to

Net_Prod.

In the other partition, when Net_Prod receives an ICMP Echo packet, it will reply

with ICMP Echo Reply to sender host. Net_Prod is expected to send a ping and receive

its ping reply from Net_Cons. The description of the test and its results are summarized

in Table 38.

. Test ID Type Test Description Expected Results
Result

(Pass/Fail)

A2 F

(a) Net_Prod sends a ping
(ICMP Echo packet) to
Net_Cons and waits for
ping reply.

(b) Net_Cons sends a
ping (ICMP Echo packet)
to Net_Prod and waits for
ping reply

Precondition: Both actions
(a) and (b) runs
simultaneously.

Expected:
(a) Net_Prod sends a ping
and receives a ping reply
from Net_Cons. Net_Prod
receives a ping from
Net_Cons and sends a ping
reply back to Net_Cons.

(b) Net_Cons sends a ping
and receives a ping reply
from Net_Prod. Net_Cons
receives a ping from
Net_Prod and sends a ping
reply back to Net_Prod.

Pass

Table 38. Acceptance test A2: Sending ICMP Echo between hosts

3. Acceptance Test A3 and Results

The purpose of Test A3 is to verify that there must be a device present that can

respond when it is queried by another device. For this test, Net_Prod sends a ping packet

 79

to Net_Cons. Net_Cons, however, is not listening or responding to incoming packets. The

expected result of this test is that Net_Prod will not get a ping reply back from Net_Cons.

The result of this test is shown in Table 39.

Test ID Type Test Description Expected Results
Result

(Pass/Fail)

A3 E

Net_Prod sends a ping
(ICMP Echo packet) to
Net_Cons.

Precondition: Net_Cons is not
listening or responding to ping
packets.

Expected: The IP packet is
dropped since Net_Prod cannot
receive its ARP reply from
Net_Cons. Therefore, there is
no ping reply received from
Net_Cons.

Pass

Table 39. Acceptance test A3: Sending ICMP Echo to non-responding host

C. PROBLEMS ENCOUNTERED

There were a few problems discovered during the acceptance testing. The

problems are discussed in this section.

1. Memory Allocation

One of the problems encountered during testing was that when the ping

application sent too many ping packets, the application crashed. A closer look at the

problem suggests that the memory allocated to the pbufs in the application was not

properly de-allocated hence causing the application to exhaust its allocated memory. An

attempt was made to verify this claim by doubling the allocated heap memory used by the

application. In LWIP, the size of the heap memory used by an application can be changed

by modifying the value for the MEM_SIZE in the header file lwipopts.h. Before the

memory size was increased, the number of ping packets the application could handle was

about 25 (using Test A1). After doubling the allocated heap memory size, the number of

ping packets increased to 50 before the application crashed. Apparently, the memory used

 80

up by the application was not released after each ping is sent. When the allocated heap

memory was doubled again, another problem related to LWIP heap memory allocation

was found: the ping application crashed during boot up. .

2. LWIP Heap Memory

The ping application crashed during boot up when the LWIP heap memory is set

to a value larger than 64000 bytes. Preliminary investigation of this problem suggests that

it may be related to the memory functions in mem.c, which is used by LWIP for doing

memory operations. The problem may be caused by pointer assignments and pointer

arithmetic used in LWIP. The LPSK uses far pointers for its memory model while LWIP

may use near pointers. A far pointer has a segment selector and an offset value, which

allows the LPSK to use a memory region in a different memory segment. A near pointer,

on the other hand, only has an offset value, which references the current memory

segment. A problem may occur if the offset value of the far pointer refers to a different

memory segment but is interpreted as a near pointer, i.e., to be the offset value within the

current memory segment. The offset value may be larger than the size of current memory

segment and cause the application to crash. More study, however, is needed to understand

the memory allocation problem completely. An approach analyzing the problem is to

determine the offset value used during pointer arithmetic by LWIP, and whether or not

the result falls within the range of current LPSK heap segment.

D. SUMMARY

The functional tests and acceptance tests and their results were presented in this

chapter. All the tests passed, i.e. the expected results match the actual results. The test

procedures and actual test results for all the tests can be found in Appendix B. Two

problems relating to memory were discovered during the acceptance testing. They were

most likely caused by improper de-allocation of memory and misinterpretation of offset

value between near and far pointers.

 81

VI. CONCLUSION AND FUTURE WORK

Transient access to sensitive information during critical situations allows soldiers

to have a tactical advantage in a battle. Accessing sensitive information using a tactical

device at critical moments enables soldiers to be more aware of their situational

surroundings and allows them to make well-informed decisions. A tactical device, that

contains sensitive information, not only must have the capability to protect the

information, it is also desirable to provide transient access to information to soldiers at

critical junctures. The use of a separation kernel with appropriate protected services and

multilevel secure services can support such a paradigm. The objective of this work has

been to support such capabilities with a networking functionality. This chapter concludes

this thesis and provides some suggestions for future work.

A. CONCLUSION

This project is focused on implementing an IP protocol stack for the LPSK. An

evaluation of open source implementations of network protocol stacks was carried out

during the design phase. A suitable open source implementation, LWIP, was eventually

chosen, but some modifications were needed to fit it into the overall LPSK architecture.

LPSK architecture is organized so that functions are decomposed into modules and

layered in such a way that functions in the upper layers can only make calls to functions

in the lower layers but not the other way round, i.e. there are no circular dependencies

among the functions. The original LWIP architecture, however, allows lower layers to

make function calls to the upper layers. Such inconsistency is resolved in the final design

of the IP protocol stack. The IP protocol stack, which uses some of LWIP functions, was

successfully implemented and integrated with the existing LPSK.

Functional and acceptance tests were conducted. Each of the functions, which

were either newly created or modified from LWIP original functions, was tested for its

correctness and its ability to handle exceptions during the functional test. For the

acceptance tests, a ping application was developed as a system prototype for a

networking demonstration using the LPSK IP protocol stack. The system prototype runs

 82

and executes successfully. To conclude, this project affirms the hypothesis that an IP

protocol stack can be built and used to simulate network traffic in a MLS system

prototype, and that the IP protocol stack was able to be modularized and layered to fit the

LPSK architecture.

With the implemented IP protocol stack, there is now a higher chance of

providing networking functionality in MLS tactical hand held devices. Full networking

capability can only be achieved if the network stack provides support for the whole

TCP/IP protocol suite, and if driver for networking hardware such as network interface

controller is implemented. The IP protocol stack can only simulate ping within the MLS

prototype, but with future enhancements, it is possible to provide networking

functionality in MLS device.

B. FUTURE WORK

The following areas can be considered for future enhancements of the IP protocol

stack.

1. Separation of Privilege Levels

The current implementation of the IP protocol stack is not separated into hardware

privilege levels although its functions are modularized and layered. A study of how each

layer of the IP protocol stack should be separated to different hardware privilege levels

can be performed. The effects of assigning a particular protocol stack layer to different

privilege levels can also be studied.

2. Transport Layer Services Support

The original LWIP includes functions to support operations of the transport layer

protocols, in particular TCP and UDP, but they were not implemented in the LPSK IP

protocol stack. To extend the capability of the protocol stack in the LPSK, support for

TCP and UDP can be considered. With TCP and UDP support available, applications that

require TCP or UDP, such as HyperText Transfer Protocol (HTTP), File Transfer

Protocol (FTP), and Dynamic Host Configuration Protocol (DHCP), can then be

supported.

 83

3. Network Layer Services Extension

The IP protocol stack only supports Internet Protocol version 4. As more systems

are gearing toward the next generation Internet Protocol, which is IPv6, adding support

for IPv6 to the IP protocol stack can be considered. The IP protocol stack currently

supports ICMP version 4 (ICMPv4). ICMPv6 should also be considered along with IPv6

as IPv6 cannot support ICMPv4. In addition, support for IPSec can also be considered.

IPSec is a mechanism that “provides security to IP and upper-layer protocols” [36]. In

addition, the current ICMP types supported are Echo and Echo Reply. Other ICMP types

such as Timestamp Request and Reply, and Address Mask Request and Reply can be

considered.

 84

THIS PAGE INTENTIONALLY LEFT BLANK

 85

APPENDIX A: MAKEFILE CONFIGURATION

This appendix lists the changes added to the Makefile to compile the LWIP files

used in this project as well as for compiling the code for the IP stack and the ping

application. The changes added to Makefile are as follows:

N_PROD_EXE = net_prod
N_PROD_OBJS = net_prod.o tsm_stack.o tsm_io.o
$(LPSK_IP_STACK_OBJS)
FN_PROD_OBJS = FILE net_prod.o,tsm_stack.o,tsm_io.o,
$(LPSK_IP_STACK_FOBJS)

N_CONS_EXE = net_cons
N_CONS_OBJS = net_cons.o tsm_stack.o tsm_io.o
$(LPSK_IP_STACK_OBJS)
FN_CONS_OBJS = FILE net_cons.o,tsm_stack.o,tsm_io.o,
$(LPSK_IP_STACK_FOBJS)

LWIP_CORE_OBJS = def.o init.o mem.o memp.o netif.o pbuf.o raw.o
sys.o udp.o timers.o

LWIP_CORE_FOBJS = def.o,init.o,mem.o,memp.o,netif.o,pbuf.o,
raw.o,sys.o,udp.o,timers.o

LWIP_IP4_OBJS = icmp.o ip.o inet.o ip_addr.o ip_frag.o
inet_chksum.o

LWIP_IP4_FOBJS =
icmp.o,ip.o,inet.o,ip_addr.o,ip_frag.o,inet_chksum.o

LWIP_NETIF_OBJS = etharp.o

LWIP_NETIF_FOBJS = etharp.o

LPSK_IP_STACK_OBJS = ip_stack.o clib.o $(LWIP_CORE_OBJS)
$(LWIP_IP4_OBJS) $(LWIP_NETIF_OBJS)

LPSK_IP_STACK_FOBJS = ip_stack.o,clib.o,$(LWIP_CORE_FOBJS),
$(LWIP_IP4_FOBJS),$(LWIP_NETIF_FOBJS)

#changes to use new string.h, stdlib.h, stdio.h
INC1 = -
i.:./include:./include/lwip:./arch:./include/ipv4:./include/snmp:
./include/netif:$(WATCOM)/lh

ip_stack.o: wcc386 ip_stack.c $(INC1) $(CC_OPTS)

 86

clib.o: wcc386 clib.c $(INC1) $(CC_OPTS)
etharp.o: wcc386 netif/etharp.c $(INC1) $(CC_OPTS)
icmp.o: wcc386 core/ipv4/icmp.c $(INC1) $(CC_OPTS)
ip.o: wcc386 core/ipv4/ip.c $(INC1) $(CC_OPTS)
inet.o: wcc386 core/ipv4/inet.c $(INC1) $(CC_OPTS)
ip_addr.o: wcc386 core/ipv4/ip_addr.c $(INC1) $(CC_OPTS)
ip_frag.o: wcc386 core/ipv4/ip_frag.c $(INC1) $(CC_OPTS)
inet_chksum.o: wcc386 core/ipv4/inet_chksum.c $(INC1) $(CC_OPTS)
def.o: wcc386 core/def.c $(INC1) $(CC_OPTS)
netif.o: wcc386 core/netif.c $(INC1) $(CC_OPTS)
pbuf.o: wcc386 core/pbuf.c $(INC1) $(CC_OPTS)
sys.o: wcc386 core/sys.c $(INC1) $(CC_OPTS)
mem.o: wcc386 core/mem.c $(INC1) $(CC_OPTS)
raw.o: wcc386 core/raw.c $(INC1) $(CC_OPTS)
timers.o: wcc386 core/timers.c $(INC1) $(CC_OPTS)
init.o: wcc386 core/init.c $(INC1) $(CC_OPTS)
memp.o: wcc386 core/memp.c $(INC1) $(CC_OPTS)
udp.o: wcc386 core/udp.c $(INC1) $(CC_OPTS)

net_prod : $(N_PROD_OBJS)
 wlink name $(N_PROD_EXE) debug all system lxkernel \
 option noextension option internalrelocs \
 option verbose option start=_net_prod_main option map\
 option maxerrors=250 option symfile \
 $(FN_PROD_OBJS) LIBFILE $(EXE).lib, $(PL2_EXE).lib
 chmod 440 $@

net_cons : $(N_CONS_OBJS)
 wlink name $(N_CONS_EXE) debug all system lxkernel \
 option noextension option internalrelocs \
 option verbose option start=_net_cons_main option map\
 option maxerrors=250 option symfile \
 $(FN_CONS_OBJS) LIBFILE $(EXE).lib, $(PL2_EXE).lib
 chmod 440 $@

all: $(PROCESS_CALLGATES) $(PROCESS_KEYMAP) $(EXE)
$(PL1_EXE) $(PL2_EXE) $(GATES) $(PL1_GATES) $(PL2_GATES)
$(TSM_EXE) $(TPA_EXE) $(BOX_EXE) $(CLOCK_EXE) $(TSM_SC_EXE)
$(TSM2_EXE) $(KEYMAP_OUTPUT_FILE) $(N_PROD_EXE) $(N_CONS_EXE)

 87

APPENDIX B: TEST PROCEDURES

Appendix B describes the procedures for the Testing phase described in Chapter

V. The expected results of each test for each partition are also presented.

A. Test Procedures for Original LWIP Functions

1. Go to ‘<current-working-

dir>/tcx/trunk/kernel/2tests/original-lwip’ directory. <

current-working-dir> is where you installed the LPSK source code.

2. Build the source code by executing the command ‘make clean all’.

3. Upload the compiled binary to the test machine.

4. Start the test machine. At the Login screen, enter the correct username and

password.

5. At the main menu, press ‘F’ for “change partition Focus.”

6. Key in ‘1’ to select “Network Producer” partition.

7. Observe results in “Network Producer” partition.

8. To change partition, press the Secure Attention Key combination: Alt+Esc

9. Key in ‘2’ to select “Network Consumer” partition.

10. Observe results in “Network Consumer” partition.

B. Test Procedures for Newly Added and Modified LWIP Functions

1. Go to ‘<current-working-dir>/tcx/trunk/kernel’ directory. <

current-working-dir> is where you installed the LPSK source code.

2. Run the script ‘loadtest.sh’ to copy files from the sub-directory ‘2tests’.

For example, if the test ID is Fa1, enter the command ‘./loadtest.sh Fa1’.

a. Original net_prod.c file is renamed as net_prod.c.backup.

b. Original net_cons.c file is renamed as net_cons.c.backup.

 88

3. File ‘net_prod.c.Fa1’ from ‘2tests’ sub-directory will be copied over to

the ‘<current-working-dir>/tcx/trunk/kernel’ directory as

‘net_prod.c’.

4. File ‘net_cons.c.Fa1’ from ‘2tests’ sub-directory will be copied over to

the ‘<current-working-dir>/tcx/trunk/kernel’ directory as

‘net_cons.c’.

5. Build the source code by running the script ‘./build’.

6. Upload the compiled binary to the test machine.

7. Start the test machine. At the Login screen, enter the correct username and

password.

8. At the main menu, press ‘F’ for “change partition Focus.”

9. Key in ‘1’ to select “Network Producer” partition.

10. Observe results in “Network Producer” partition.

11. To change partition, press the Secure Attention Key combination: Alt+Esc

12. Key in ‘2’ to select “Network Consumer” partition.

13. Observe results in “Network Consumer” partition.

14. To restore the original net_prod.c and net_cons.c files,

a. Rename net_prod.c.backup to net_prod.c

b. Rename net_cons.c.backup to net_cons.c

15. To change to another test, turn off the test machine, start the development

machine. Repeat the steps 1 to 14.

C. Functional Test Expected Results

This section lists the expected results of Net_Prod and Net_Cons partitions for

each functional test.

Function Test: Original LWIP Functions
Test ID Expected Result (Net_Prod) Expected Result (Net_Cons)

FL1
etharp_request()
low_level_output()
raw_sendto()

etharp_request()
raw_sendto()
ip_route()

 89

ip_route()
ip_output_if()
etharp_output()
etharp_query()
etharp_request()
low_level_output()
[192.168.0.11] Ping 192.168.0.22…
etharp_send_ip()
low_level_output()
ethernet_input()
etharp_arp_input()
low_level_output()
ethernet_input()
ip_input()
icmp_input()
Version: 4 Protocol: 1
Source IP: 192.168.0.22 Dest IP:
192.168.0.11
ICMP Type: 8, code: 0, id:16822
ip_output_if()
etharp_output()
etharp_send_ip()
low_level_output()
ethernet_input()
etharp_arp_input()
ethernet_input()
ip_input()
icmp_input()
Version: 4 Protocol: 1
Source IP: 192.168.0.22
Dest IP: 192.168.0.11
ICMP Type: 0, code: 0, id:16811

ip_output_if()
etharp_output()
etharp_query()
etharp_request()
[192.168.0.22] Ping 192.168.0.11…
ethernet_input()
etharp_arp_input()
etharp_send_ip()
ethernet_input()
etharp_arp_input()
ethernet_input()
ip_input()
icmp_input()
Version: 4 Protocol: 1
Source IP: 192.168.0.11
Dest IP: 192.168.0.22
ICMP Type: 8, code: 0, id:16811
ip_output_if()
etharp_output()
etharp_send_ip()
ethernet_input()
etharp_arp_input()
ethernet_input()
ip_input()
icmp_input()
Version: 4 Protocol: 1
Source IP: 192.168.0.11
Dest IP: 192.168.0.22
ICMP Type: 0, code: 0, id:16822

Function Test Group A: low_level_output()
Test ID Expected Result (Net_Prod) Expected Result (Net_Cons)

Fa1

netif name: eth5
[Eth src] 11:22:33:44:55:11
[Eth dest] 1:2:3:4:5:1
Error: Invalid parameter. netif is null.

num of bytes read = 0

Fa2
netif name: eth5
[Eth src] 11:22:33:44:55:11
[Eth dest] 1:2:3:4:5:1

num of bytes read = 0

 90

Error: Invalid parameter. pbuf is null.

Fa3

netif name: eth5
Length of pbuf = 0
Total length of pbuf + chain = 0
no of bytes written = 0
Ethernet ARP frame sent

num of bytes read = 0

Fa4

netif name: eth5
[Eth src] 11:22:33:44:55:11
[Eth dest] 1:2:3:4:5:1
[Eth type] ARP
Length of pbuf = 14
Total length of pbuf + chain = 14
no of bytes written = 14
Ethernet ARP frame sent

skip ethernet_input()
Eth [ARP] frame added to list
num of bytes read = 14
LPSK_ETHTYPE_DATA
netif name: eth6
[Eth src] 11:22:33:44:55:11
[Eth dest] 1:2:3:4:5:1
[Eth type] ARP

Function Test Group B: get_next_frame()
Test ID Expected Result (Net_Prod) Expected Result (Net_Cons)

Fb1

netif name: eth5
[Eth src] 11:22:33:44:55:11
[Eth dest] 1:2:3:4:5:1
[Eth type] ARP
Length of pbuf = 14
Total length of pbuf + chain = 14
no of bytes written = 14

Error: Invalid parameter. buffer pointer
is null.

Fb2

netif name: eth5
[Eth src] 11:22:33:44:55:11
[Eth dest] 1:2:3:4:5:1
[Eth type] ARP
Length of pbuf = 14
Total length of pbuf + chain = 14
no of bytes written = 14

Error: Invalid parameter. num_read
pointer is null.

Fb3

netif name: eth5
[Eth src] 11:22:33:44:55:11
[Eth dest] 1:2:3:4:5:1
[Eth type] ARP
Length of pbuf = 14
Total length of pbuf + chain = 14
no of bytes written = 14

Error: Invalid parameter. Unknown
Ethernet type requested.

Fb4 netif name: eth5
[Eth src] 11:22:33:44:55:11
[Eth dest] 1:2:3:4:5:1
[Eth type] ARP

Error: Invalid parameter. netif_name
pointer is null.

 91

Length of pbuf = 14
Total length of pbuf + chain = 14
no of bytes written = 14

Fb5

netif name: eth5
[Eth src] 11:22:33:44:55:11
[Eth dest] 1:2:3:4:5:1
[Eth type] ARP
Length of pbuf = 14
Total length of pbuf + chain = 14
no of bytes written = 14

skip ethernet_input()
Eth [ARP] frame added to list.
LPSK_ETHTYPE_DATA
num of bytes read = 14
netif name: eth6
[Eth src] 11:22:33:44:55:11
[Eth dest] 1:2:3:4:5:1
[Eth type] ARP

Fb6

netif name: eth5
[Eth src] 11:22:33:44:55:11
[Eth dest] 1:2:3:4:5:1
[Eth type] ARP
Length of pbuf = 14
Total length of pbuf + chain = 14
no of bytes written = 14

begin ethernet_input()
ethernet_input() returns ERR_OK
end ethernet_input()
LPSK_TYPE_ERROR

Fb7

netif name: eth5
[Eth src] 99:88:77:66:55:44
[Eth dest] 9:8:7:6:5:4
[Eth type] IP
Length of pbuf = 34
Total length of pbuf + chain = 34
IP packets sent....
Version: 4, Src IP: 192.168.0.11, Dest
IP: 192.168.0.22
Protocol: 17 (UDP)
no of bytes written = 34
Ethernet IP frame sent

netif name: eth5
[Eth src] 11:22:33:44:55:11
[Eth dest] 1:2:3:4:5:1
[Eth type] ARP
Length of pbuf = 14
Total length of pbuf + chain = 14
no of bytes written = 14
Ethernet ARP frame sent

Eth [IP] frame added to list
skip ethernet_input()
Eth [ARP] frame added to list.
LPSK_ETHTYPE_DATA
num of bytes read = 34
netif name: eth6
[Eth src] 99:88:77:66:55:44
[Eth dest] 9:8:7:6:5:4
[Eth type] IP
IP packets received....
Version: 4, Src IP: 192.168.0.11, Dest
IP: 192.168.0.22
Protocol: 17 (UDP)

Fb8 netif name: eth5
[Eth src] 99:88:77:66:55:44
[Eth dest] 9:8:7:6:5:4
[Eth type] IP

Eth [IP] frame added to list
begin ethernet_input()
ethernet_input() returns ERR_OK
end ethernet_input()

 92

Length of pbuf = 34
Total length of pbuf + chain = 34
IP packets sent....
Version: 4, Src IP: 192.168.0.11, Dest
IP: 192.168.0.22
Protocol: 17 (UDP)
no of bytes written = 34
Ethernet IP frame sent

netif name: eth5
[Eth src] 11:22:33:44:55:11
[Eth dest] 1:2:3:4:5:1
[Eth type] ARP
Length of pbuf = 14
Total length of pbuf + chain = 14
no of bytes written = 14
Ethernet ARP frame sent

LPSK_ETHTYPE_DATA
num of bytes read = 34
netif name: eth6
[Eth src] 99:88:77:66:55:44
[Eth dest] 9:8:7:6:5:4
[Eth type] IP
IP packets received....
Version: 4, Src IP: 192.168.0.11, Dest
IP: 192.168.0.22
Protocol: 17 (UDP)

Function Test Group C: get_eth_ip_frame()
Test ID Expected Result (Net_Prod) Expected Result (Net_Cons)

Fc1

netif name: eth5
[Eth src] 99:88:77:66:55:44
[Eth dest] 9:8:7:6:5:4
[Eth type] IP
Length of pbuf = 34
Total length of pbuf + chain = 34
IP packets sent....
Version: 4, Src IP: 192.168.0.11, Dest
IP: 192.168.0.22
Protocol: 17 (UDP)
no of bytes written = 34
Ethernet IP frame sent

netif name: eth5
[Eth src] 11:22:33:44:55:11
[Eth dest] 1:2:3:4:5:1
[Eth type] ARP
Length of pbuf = 14
Total length of pbuf + chain = 14
no of bytes written = 14
Ethernet ARP frame sent

Error: Invalid parameter. buffer pointer
is null.

Fc2 netif name: eth5 Error: Invalid parameter. num_read

 93

[Eth src] 99:88:77:66:55:44
[Eth dest] 9:8:7:6:5:4
[Eth type] IP
Length of pbuf = 34
Total length of pbuf + chain = 34
IP packets sent....
Version: 4, Src IP: 192.168.0.11, Dest
IP: 192.168.0.22
Protocol: 17 (UDP)
no of bytes written = 34
Ethernet IP frame sent

netif name: eth5
[Eth src] 11:22:33:44:55:11
[Eth dest] 1:2:3:4:5:1
[Eth type] ARP
Length of pbuf = 14
Total length of pbuf + chain = 14
no of bytes written = 14
Ethernet ARP frame sent

pointer is null.

Fc3

netif name: eth5
[Eth src] 99:88:77:66:55:44
[Eth dest] 9:8:7:6:5:4
[Eth type] IP
Length of pbuf = 34
Total length of pbuf + chain = 34
IP packets sent....
Version: 4, Src IP: 192.168.0.11, Dest
IP: 192.168.0.22
Protocol: 17 (UDP)
no of bytes written = 34
Ethernet IP frame sent

netif name: eth5
[Eth src] 11:22:33:44:55:11
[Eth dest] 1:2:3:4:5:1
[Eth type] ARP
Length of pbuf = 14
Total length of pbuf + chain = 14
no of bytes written = 14
Ethernet ARP frame sent

Error: Invalid parameter. netif_name
pointer is null.

Fc4 netif name: eth5
[Eth src] 99:88:77:66:55:44

Eth [IP] frame added to list
begin ethernet_input()

 94

[Eth dest] 9:8:7:6:5:4
[Eth type] IP
Length of pbuf = 34
Total length of pbuf + chain = 34
IP packets sent....
Version: 4, Src IP: 192.168.0.11, Dest
IP: 192.168.0.22
Protocol: 17 (UDP)
no of bytes written = 34
Ethernet IP frame sent

netif name: eth5
[Eth src] 11:22:33:44:55:11
[Eth dest] 1:2:3:4:5:1
[Eth type] ARP
Length of pbuf = 14
Total length of pbuf + chain = 14
no of bytes written = 14
Ethernet ARP frame sent

ethernet_input() returns ERR_OK
end ethernet_input()
begin ip_input_verify()
ip_input_verify() returns ERR_OK
end ip_input_verify()
LPSK_ETH_IP_DATA
num of bytes read = 34
netif name: eth6
IP packets received....
Version: 4, Src IP: 192.168.0.11, Dest
IP: 192.168.0.22
Protocol: 17 (UDP)

Function Test Group D: get_ip_datagram()
Test ID Expected Result (Net_Prod) Expected Result (Net_Cons)

Fd1

netif name: eth5
[Eth src] 99:88:77:66:55:44
[Eth dest] 9:8:7:6:5:4
[Eth type] IP
Length of pbuf = 34
Total length of pbuf + chain = 34
IP packets sent....
Version: 4, Src IP: 192.168.0.11,
Dest IP: 192.168.0.22
Protocol: 17 (UDP)
no of bytes written = 34
Ethernet IP frame sent

netif name: eth5
[Eth src] 11:22:33:44:55:11
[Eth dest] 1:2:3:4:5:1
[Eth type] ARP
Length of pbuf = 14
Total length of pbuf + chain = 14
no of bytes written = 14

Error: Invalid parameter. buffer pointer is
null.

 95

Ethernet ARP frame sent

Fd2

netif name: eth5
[Eth src] 99:88:77:66:55:44
[Eth dest] 9:8:7:6:5:4
[Eth type] IP
Length of pbuf = 34
Total length of pbuf + chain = 34
IP packets sent....
Version: 4, Src IP: 192.168.0.11,
Dest IP: 192.168.0.22
Protocol: 17 (UDP)
no of bytes written = 34
Ethernet IP frame sent

netif name: eth5
[Eth src] 11:22:33:44:55:11
[Eth dest] 1:2:3:4:5:1
[Eth type] ARP
Length of pbuf = 14
Total length of pbuf + chain = 14
no of bytes written = 14
Ethernet ARP frame sent

Error: Invalid parameter. num_read pointer
is null.

Fd3

netif name: eth5
[Eth src] 99:88:77:66:55:44
[Eth dest] 9:8:7:6:5:4
[Eth type] IP
Length of pbuf = 34
Total length of pbuf + chain = 34
IP packets sent....
Version: 4, Src IP: 192.168.0.11,
Dest IP: 192.168.0.22
Protocol: 17 (UDP)
no of bytes written = 34
Ethernet IP frame sent

netif name: eth5
[Eth src] 11:22:33:44:55:11
[Eth dest] 1:2:3:4:5:1
[Eth type] ARP
Length of pbuf = 14
Total length of pbuf + chain = 14
no of bytes written = 14
Ethernet ARP frame sent

Error: Invalid parameter. netif_name
pointer is null.

Fd4 netif name: eth5
[Eth src] 99:88:77:66:55:44

Error: Invalid parameter. Unknown IP
Protocol type.

 96

[Eth dest] 9:8:7:6:5:4
[Eth type] IP
Length of pbuf = 34
Total length of pbuf + chain = 34
IP packets sent....
Version: 4, Src IP: 192.168.0.11,
Dest IP: 192.168.0.22
Protocol: 17 (UDP)
no of bytes written = 34
Ethernet IP frame sent

netif name: eth5
[Eth src] 11:22:33:44:55:11
[Eth dest] 1:2:3:4:5:1
[Eth type] ARP
Length of pbuf = 14
Total length of pbuf + chain = 14
no of bytes written = 14
Ethernet ARP frame sent

Fd5

netif name: eth5
[Eth src] 99:88:77:66:55:44
[Eth dest] 9:8:7:6:5:4
[Eth type] IP
Length of pbuf = 34
Total length of pbuf + chain = 34
IP packets sent....
Version: 4, Src IP: 192.168.0.11,
Dest IP: 192.168.0.22
Protocol: 17 (UDP)
no of bytes written = 34
Ethernet IP frame sent

netif name: eth5
[Eth src] 11:22:33:44:55:11
[Eth dest] 1:2:3:4:5:1
[Eth type] ARP
Length of pbuf = 14
Total length of pbuf + chain = 14
no of bytes written = 14
Ethernet ARP frame sent

Eth [IP] frame added to list
begin ethernet_input()
ethernet_input() returns ERR_OK
end ethernet_input()
begin ip_input_verify()
ip_input_verify() returns ERR_OK
end ip_input_verify()
LPSK_IPTYPE_ERROR

Fd6

netif name: eth5
[Eth src] 99:88:77:66:55:44
[Eth dest] 9:8:7:6:5:4
[Eth type] IP
Length of pbuf = 34

Eth [IP] frame added to list
begin ethernet_input()
ethernet_input() returns ERR_OK
end ethernet_input()
begin ip_input_verify()

 97

Total length of pbuf + chain = 34
IP packets sent....
Version: 4, Src IP: 192.168.0.11,
Dest IP: 192.168.0.22
Protocol: 17 (UDP)
no of bytes written = 34
Ethernet IP frame sent

netif name: eth5
[Eth src] 11:22:33:44:55:11
[Eth dest] 1:2:3:4:5:1
[Eth type] ARP
Length of pbuf = 14
Total length of pbuf + chain = 14
no of bytes written = 14
Ethernet ARP frame sent

ip_input_verify() returns ERR_OK
end ip_input_verify()
LPSK_IPTYPE_DATA
num of bytes read = 34
Netif name = eth6
IP packets received....
Version: 4, Src IP: 192.168.0.11, Dest IP:
192.168.0.22
Protocol: 17 (UDP)

Function Test Group E: get_icmp_packet()
Test ID Expected Result (Net_Prod) Expected Result (Net_Cons)

Fe1

netif name: eth5
[Eth src] 99:88:77:66:55:44
[Eth dest] 9:8:7:6:5:4
[Eth type] IP
Length of pbuf = 42
Total length of pbuf + chain = 42
IP packets sent....
Version: 4, Src IP: 192.168.0.11,
Dest IP: 192.168.0.22
Protocol: 1 (ICMP), ICMP Type: 8
(Echo), ICMP Code: 0
Identifier: 16811
no of bytes written = 42
Ethernet IP frame sent

Error: Invalid parameter. buffer
pointer is null.

Fe2

netif name: eth5
[Eth src] 99:88:77:66:55:44
[Eth dest] 9:8:7:6:5:4
[Eth type] IP
Length of pbuf = 42

Error: Invalid parameter. num_read
pointer is null.

 98

Total length of pbuf + chain = 42
IP packets sent....
Version: 4, Src IP: 192.168.0.11,
Dest IP: 192.168.0.22
Protocol: 1 (ICMP), ICMP Type: 8
(Echo), ICMP Code: 0
Identifier: 16811
no of bytes written = 42
Ethernet IP frame sent

Fe3

netif name: eth5
[Eth src] 99:88:77:66:55:44
[Eth dest] 9:8:7:6:5:4
[Eth type] IP
Length of pbuf = 42
Total length of pbuf + chain = 42
IP packets sent....
Version: 4, Src IP: 192.168.0.11,
Dest IP: 192.168.0.22
Protocol: 1 (ICMP), ICMP Type: 8
(Echo), ICMP Code: 0
Identifier: 16811
no of bytes written = 42
Ethernet IP frame sent

Error: Invalid parameter. Unknown
ICMP type.

Fe4

netif name: eth5
[Eth src] 99:88:77:66:55:44
[Eth dest] 9:8:7:6:5:4
[Eth type] IP
Length of pbuf = 42
Total length of pbuf + chain = 42
IP packets sent....
Version: 4, Src IP: 192.168.0.11,
Dest IP: 192.168.0.22
Protocol: 1 (ICMP), ICMP Type: 8
(Echo), ICMP Code: 0
Identifier: 16811
no of bytes written = 42
Ethernet IP frame sent

Eth [IP] frame added to list
begin ip_input_verify()
ip_input_verify() returns ERR_OK
end ip_input_verify()
LPSK_ICMPTYPE_DATA
num of bytes read = 42
IP packets received....
Version: 4, Src IP: 192.168.0.11, Dest
IP: 192.168.0.22
Protocol: 1 (ICMP), ICMP Type: 8
(Echo), ICMP Code: 0
Identifier: 16811

Fe5

netif name: eth5
[Eth src] 99:88:77:66:55:44
[Eth dest] 9:8:7:6:5:4
[Eth type] IP
Length of pbuf = 42
Total length of pbuf + chain = 42
IP packets sent....
Version: 4, Src IP: 192.168.0.11,

Eth [IP] frame added to list
begin ip_input_verify()
ip_input_verify() returns ERR_OK
end ip_input_verify()
IP packets received....
Version: 4, Src IP: 192.168.0.11, Dest
IP: 192.168.0.22
Protocol: 1 (ICMP), ICMP Type: 8

 99

Dest IP: 192.168.0.22
Protocol: 1 (ICMP), ICMP Type: 8
(Echo), ICMP Code: 0
Identifier: 16811
no of bytes written = 42
Ethernet IP frame sent

(Echo), ICMP Code: 0
Identifier: 16811
begin icmp_input()
no of bytes written = 42
Unable to get ARP reply from
destination host. IP packet dropped.
end icmp_input()

Fe6

netif name: eth5
[Eth src] 99:88:77:66:55:44
[Eth dest] 9:8:7:6:5:4
[Eth type] IP
Length of pbuf = 42
Total length of pbuf + chain = 42
IP packets sent....
Version: 4, Src IP: 192.168.0.11,
Dest IP: 192.168.0.22
Protocol: 1 (ICMP), ICMP Type: 0
(Echo Reply), ICMP Code: 0
Identifier: 16811
no of bytes written = 42
Ethernet IP frame sent

Eth [IP] frame added to list
begin ip_input_verify()
ip_input_verify() returns ERR_OK
end ip_input_verify()
Warning: ICMP Echo Reply ID
mismatched.
LPSK_ICMPTYPE_DATA
num of bytes read = 42
IP packets received....
Version: 4, Src IP: 192.168.0.11, Dest
IP: 192.168.0.22
Protocol: 1 (ICMP), ICMP Type: 0
(Echo Reply), ICMP Code: 0
Identifier: 16811

Fe7

netif name: eth5
[Eth src] 99:88:77:66:55:44
[Eth dest] 9:8:7:6:5:4
[Eth type] IP
Length of pbuf = 42
Total length of pbuf + chain = 42
IP packets sent....
Version: 4, Src IP: 192.168.0.11,
Dest IP: 192.168.0.22
Protocol: 1 (ICMP), ICMP Type: 0
(Echo Reply), ICMP Code: 0
Identifier: 16822
no of bytes written = 42
Ethernet IP frame sent

Eth [IP] frame added to list
begin ip_input_verify()
ip_input_verify() returns ERR_OK
end ip_input_verify()
ICMP Echo Reply ID matched.
LPSK_ICMPTYPE_DATA
num of bytes read = 42
IP packets received....
Version: 4, Src IP: 192.168.0.11, Dest
IP: 192.168.0.22
Protocol: 1 (ICMP), ICMP Type: 0
(Echo Reply), ICMP Code: 0
Identifier: 16822

 100

Function Test Group F: recv_ping()
Test ID Expected Result (Net_Prod) Expected Result (Net_Cons)

Ff1

netif name: eth5
[Eth src] 99:88:77:66:55:44
[Eth dest] 9:8:7:6:5:4
[Eth type] IP
Length of pbuf = 42
Total length of pbuf + chain = 42
IP packets sent....
Version: 4, Src IP: 192.168.0.11,
Dest IP: 192.168.0.22
Protocol: 1 (ICMP), ICMP Type: 0
(Echo Reply), ICMP Code: 0
Identifier: 16822
no of bytes written = 42
Ethernet IP frame sent

Error: Invalid parameter. buffer
pointer is null.

Ff2

netif name: eth5
[Eth src] 99:88:77:66:55:44
[Eth dest] 9:8:7:6:5:4
[Eth type] IP
Length of pbuf = 42
Total length of pbuf + chain = 42
IP packets sent....
Version: 4, Src IP: 192.168.0.11,
Dest IP: 192.168.0.22
Protocol: 1 (ICMP), ICMP Type: 0
(Echo Reply), ICMP Code: 0
Identifier: 16822
no of bytes written = 42
Ethernet IP frame sent

Error: Invalid parameter. num_read is
null.

Ff3

netif name: eth5
[Eth src] 99:88:77:66:55:44
[Eth dest] 9:8:7:6:5:4
[Eth type] IP
Length of pbuf = 42
Total length of pbuf + chain = 42
IP packets sent....
Version: 4, Src IP: 192.168.0.11,
Dest IP: 192.168.0.22
Protocol: 1 (ICMP), ICMP Type: 0
(Echo Reply), ICMP Code: 0
Identifier: 16822
no of bytes written = 42

Eth [IP] frame added to list
begin ip_input_verify()
ip_input_verify() returns ERR_OK
end ip_input_verify()
ICMP Echo Reply ID matched.
NO_ERROR
num of bytes read = 28
IP packets received....
Version: 4, Src IP: 192.168.0.11, Dest
IP: 192.168.0.22
Protocol: 1 (ICMP), ICMP Type: 0
(Echo Reply), ICMP Code: 0
Identifier: 16822

 101

Ethernet IP frame sent

Function Test Group G: get_eth_arp_frame()
Test ID Expected Result (Net_Prod) Expected Result (Net_Cons)

Fg1

netif name: eth5
[Eth src] 99:88:77:66:55:44
[Eth dest] 9:8:7:6:5:4
[Eth type] IP
Length of pbuf = 42
Total length of pbuf + chain = 42
IP packets sent....
Version: 4, Src IP: 192.168.0.11, Dest
IP: 192.168.0.22
Protocol: 17 (UDP)
no of bytes written = 42
Ethernet IP frame sent

netif name: eth5
[Eth src] 11:22:33:44:55:11
[Eth dest] 1:2:3:4:5:1
[Eth type] ARP
Length of pbuf = 14
Total length of pbuf + chain = 14
no of bytes written = 14
Ethernet ARP frame sent

Eth [IP] frame added to list
get_next_frame:: skip ethernet_input()
Eth [ARP] frame added to list
get_eth_arp_frame:: begin
ethernet_input()
get_eth_arp_frame:: ethernet_input()
returns ERR_OK
get_eth_arp_frame:: end
ethernet_input()
NO_ERROR

 102

Function Test Group H: ip_input_verify()
Test ID Expected Result (Net_Prod) Expected Result (Net_Cons)

Fh1

netif name: eth5
[Eth src] 99:88:77:66:55:44
[Eth dest] 9:8:7:6:5:4
[Eth type] IP
Length of pbuf = 42
Total length of pbuf + chain = 42
IP packets sent....
Version: 4, Src IP: 192.168.0.11, Dest
IP: 192.168.0.22
Protocol: 1 (ICMP), ICMP Type: 0
(Echo Reply), ICMP Code: 0
Identifier: 16822
no of bytes written = 42
Ethernet IP frame sent

netif name: eth5
[Eth src] 11:22:33:44:55:11
[Eth dest] 1:2:3:4:5:1
[Eth type] ARP
Length of pbuf = 14
Total length of pbuf + chain = 14
no of bytes written = 14
Ethernet ARP frame sent

Eth [IP] frame added to list
begin ethernet_input()
ethernet_input() returns ERR_OK
end ethernet_input()
LPSK_ETHTYPE_DATA
num of bytes read = 42
netif name: eth6
IP packet received....
Version: 4, Src IP: 192.168.0.11, Dest
IP: 192.168.0.22
Protocol: 1 (ICMP), ICMP Type: 0
(Echo Reply), ICMP Code: 0
Identifier: 16822

begin ip_input_verify()
Error: Invalid parameter. pbuf pointer is
null.
end ip_input_verify()

Fh2

netif name: eth5
[Eth src] 99:88:77:66:55:44
[Eth dest] 9:8:7:6:5:4
[Eth type] IP
Length of pbuf = 42
Total length of pbuf + chain = 42
IP packets sent....
Version: 4, Src IP: 192.168.0.11, Dest
IP: 192.168.0.22
Protocol: 1 (ICMP), ICMP Type: 0
(Echo Reply), ICMP Code: 0
Identifier: 16822
no of bytes written = 42
Ethernet IP frame sent

netif name: eth5
[Eth src] 11:22:33:44:55:11
[Eth dest] 1:2:3:4:5:1

Eth [IP] frame added to list
begin ethernet_input()
ethernet_input() returns ERR_OK
end ethernet_input()
LPSK_ETHTYPE_DATA
num of bytes read = 42
netif name: eth6
IP packet received....
Version: 4, Src IP: 192.168.0.11, Dest
IP: 192.168.0.22
Protocol: 1 (ICMP), ICMP Type: 0
(Echo Reply), ICMP Code: 0
Identifier: 16822

begin ip_input_verify()
Error: Invalid parameter. netif pointer is
null.
end ip_input_verify()

 103

[Eth type] ARP
Length of pbuf = 14
Total length of pbuf + chain = 14
no of bytes written = 14
Ethernet ARP frame sent

Fh3

netif name: eth5
[Eth src] 99:88:77:66:55:44
[Eth dest] 9:8:7:6:5:4
[Eth type] IP
Length of pbuf = 42
Total length of pbuf + chain = 42
IP packets sent....
Version: 4, Src IP: 192.168.0.11, Dest
IP: 192.168.0.22
Protocol: 1 (ICMP), ICMP Type: 0
(Echo Reply), ICMP Code: 0
Identifier: 16822
no of bytes written = 42
Ethernet IP frame sent

netif name: eth5
[Eth src] 11:22:33:44:55:11
[Eth dest] 1:2:3:4:5:1
[Eth type] ARP
Length of pbuf = 14
Total length of pbuf + chain = 14
no of bytes written = 14
Ethernet ARP frame sent

Eth [IP] frame added to list
begin ethernet_input()
ethernet_input() returns ERR_OK
end ethernet_input()
LPSK_ETHTYPE_DATA
num of bytes read = 42
netif name: eth6
IP packet received....
Version: 4, Src IP: 192.168.0.11, Dest
IP: 192.168.0.22
Protocol: 1 (ICMP), ICMP Type: 0
(Echo Reply), ICMP Code: 0
Identifier: 16822
Warning: IP header length does not fit in
pbuf length. IP packet dropped.

Fh4

netif name: eth5
[Eth src] 99:88:77:66:55:44
[Eth dest] 9:8:7:6:5:4
[Eth type] IP
Length of pbuf = 42
Total length of pbuf + chain = 42
IP packets sent....
Version: 4, Src IP: 192.168.0.11, Dest
IP: 192.168.0.22
Protocol: 1 (ICMP), ICMP Type: 0
(Echo Reply), ICMP Code: 0
Identifier: 16822
no of bytes written = 42
Ethernet IP frame sent

netif name: eth5
[Eth src] 11:22:33:44:55:11

Eth [IP] frame added to list
begin ethernet_input()
ethernet_input() returns ERR_OK
end ethernet_input()
LPSK_ETHTYPE_DATA
num of bytes read = 42
netif name: eth6
IP packet received....
Version: 4, Src IP: 192.168.0.11, Dest
IP: 192.168.0.22
Protocol: 1 (ICMP), ICMP Type: 0
(Echo Reply), ICMP Code: 0
Identifier: 16822
Warning: IP total length does not fit in
pbuf length. IP packet dropped.

 104

[Eth dest] 1:2:3:4:5:1
[Eth type] ARP
Length of pbuf = 14
Total length of pbuf + chain = 14
no of bytes written = 14
Ethernet ARP frame sent

Fh5

netif name: eth5
[Eth src] 99:88:77:66:55:44
[Eth dest] 9:8:7:6:5:4
[Eth type] IP
Length of pbuf = 42
Total length of pbuf + chain = 42
IP packets sent....
Version: 4, Src IP: 192.168.0.11, Dest
IP: 192.168.0.99
Protocol: 1 (ICMP), ICMP Type: 0
(Echo Reply), ICMP Code: 0
Identifier: 16822
no of bytes written = 42
Ethernet IP frame sent

netif name: eth5
[Eth src] 11:22:33:44:55:11
[Eth dest] 1:2:3:4:5:1
[Eth type] ARP
Length of pbuf = 14
Total length of pbuf + chain = 14
no of bytes written = 14
Ethernet ARP frame sent

Eth [IP] frame added to list
begin ethernet_input()
ethernet_input() returns ERR_OK
end ethernet_input()
LPSK_ETHTYPE_DATA
num of bytes read = 42
netif name: eth6
IP packet received....
Version: 4, Src IP: 192.168.0.11, Dest
IP: 192.168.0.99
Protocol: 1 (ICMP), ICMP Type: 0
(Echo Reply), ICMP Code: 0
Identifier: 16822
begin ip_forward()
[ip_forward] netif->output()
no of bytes written = 42
Unable to get ARP reply from
destination host. IP packet dropped.
end ip_forward()

Fh6

netif name: eth5
[Eth src] 99:88:77:66:55:44
[Eth dest] 9:8:7:6:5:4
[Eth type] IP
Length of pbuf = 42
Total length of pbuf + chain = 42
IP packets sent....
Version: 4, Src IP: 192.168.0.11, Dest
IP: 192.168.2.111
Protocol: 1 (ICMP), ICMP Type: 0
(Echo Reply), ICMP Code: 0
Identifier: 16822
no of bytes written = 42
Ethernet IP frame sent

netif name: eth5

Eth [IP] frame added to list
begin ethernet_input()
ethernet_input() returns ERR_OK
end ethernet_input()
LPSK_ETHTYPE_DATA
num of bytes read = 42
netif name: eth6
IP packet received....
Version: 4, Src IP: 192.168.0.11, Dest
IP: 192.168.2.111
Protocol: 1 (ICMP), ICMP Type: 0
(Echo Reply), ICMP Code: 0
Identifier: 16822
begin ip_forward()
No forwarding route for dest IP address.
end ip_forward()

 105

[Eth src] 11:22:33:44:55:11
[Eth dest] 1:2:3:4:5:1
[Eth type] ARP
Length of pbuf = 14
Total length of pbuf + chain = 14
no of bytes written = 14
Ethernet ARP frame sent

Fh7

netif name: eth5
[Eth src] 99:88:77:66:55:44
[Eth dest] 9:8:7:6:5:4
[Eth type] IP
Length of pbuf = 42
Total length of pbuf + chain = 42
IP packets sent....
Version: 4, Src IP: 192.168.0.11, Dest
IP: 192.168.0.22
Protocol: 1 (ICMP), ICMP Type: 0
(Echo Reply), ICMP Code: 0
Identifier: 16822
no of bytes written = 42
Ethernet IP frame sent

netif name: eth5
[Eth src] 11:22:33:44:55:11
[Eth dest] 1:2:3:4:5:1
[Eth type] ARP
Length of pbuf = 14
Total length of pbuf + chain = 14
no of bytes written = 14
Ethernet ARP frame sent

Eth [IP] frame added to list
begin ethernet_input()
ethernet_input() returns ERR_OK
end ethernet_input()
LPSK_ETHTYPE_DATA
num of bytes read = 42
netif name: eth6
IP packet received....

Checksum failed. IP packet dropped.

Fh8

netif name: eth5
[Eth src] 99:88:77:66:55:44
[Eth dest] 9:8:7:6:5:4
[Eth type] IP
Length of pbuf = 42
Total length of pbuf + chain = 42
IP packets sent....
Version: 4, Src IP: 192.168.0.11, Dest
IP: 192.168.0.22
Protocol: 1 (ICMP), ICMP Type: 0
(Echo Reply), ICMP Code: 0
Identifier: 16822
no of bytes written = 42
Ethernet IP frame sent

Eth [IP] frame added to list
begin ethernet_input()
ethernet_input() returns ERR_OK
end ethernet_input()
LPSK_ETHTYPE_DATA
num of bytes read = 42
netif name: eth6
IP packet received....
Version: 4, Src IP: 192.168.0.11, Dest
IP: 192.168.0.22
Protocol: 1 (ICMP), ICMP Type: 0
(Echo Reply), ICMP Code: 0
Identifier: 16822
begin ip_input_verify()
 ip_input_verify() returns ERR_OK

 106

netif name: eth5
[Eth src] 11:22:33:44:55:11
[Eth dest] 1:2:3:4:5:1
[Eth type] ARP
Length of pbuf = 14
Total length of pbuf + chain = 14
no of bytes written = 14
Ethernet ARP frame sent

end ip_input_verify()

 107

Function Test Group I: etharp_request()
Test ID Expected Result (Net_Prod) Expected Result (Net_Cons)

Fi1
Error: Invalid parameter. netif pointer
address is null.

(none)

Fi2
Error: Invalid parameter. IP address is
null.

(none)

Fi3

ARP table before etharp_request()
ip_addr: 0.0.0.0 … MAC: 0:0:0:0:0:0
begin etharp_request()
num of bytes written = 42
get_next_frame:: skip ethernet_input()
Eth [ARP] frame added to list
get_eth_arp_frame:: begin
ethernet_input()
get_eth_arp_frame:: ethernet_input()
returns ERR_OK
get_eth_arp_frame:: end
ethernet_input()
end etharp_request()
ARP table after etharp_request()
ip_addr: 192.168.0.22 … MAC:
7:6:5:4:3:2

get_next_frame:: skip ethernet_input()
Eth [ARP] frame added to list
get_eth_arp_frame:: begin
ethernet_input()
num of bytes written = 42
get_eth_arp_frame:: ethernet_input()
returns ERR_OK
get_eth_arp_frame:: end
ethernet_input()
NO_ERROR
ARP table
ip_addr: 192.168.0.11 … MAC:
6:5:4:3:2:1

 108

Function Test Group J: send_icmp()
Test ID Expected Result (Net_Prod) Expected Result (Net_Cons)

Fj1

Error: Invalid parameter. Unknown
ICMP type or ICMP type not
supported. Only support ICMP Echo
message

LPSK_IPTYPE_ERROR

Fj2

Src IP: 192.168.0.11
Dest IP: 0.0.0.0
begin raw_sendto()
raw_sendto: No route to destination IP
addr. Packet not sent.
end raw_sendto()
send_icmp() returns ERR_RTE
(Routing Problem)

LPSK_IPTYPE_ERROR

Fj3

Error: Invalid parameter. Unknown
ICMP type or ICMP type not
supported. Only support ICMP Echo
message

LPSK_IPTYPE_ERROR

Fj4

Src IP: 0.0.0.0
Dest IP: 192.168.0.22
begin raw_sendto()
num of bytes written = 42
get_next_frame:: skip ethernet_input()
Eth [ARP] frame added to
listget_eth_arp_frame:: begin
ethernet_input()
num of bytes read = 42
get_eth_arp_frame:: ethernet_input()
returns ERR_OK
get_eth_arp_frame:: end
ethernet_input()
IP packet sent…
Ver: 4, Src IP: 192.168.0.11, Dest IP:
192.168.0.22,
Protocol: 1 (ICMP), ICMP Type: 8
(Echo), Code: 0
Identifier: 16811

Eth [IP] frame added to list
begin ip_input_verify()
ip_input_verify() returns ERR_OK
end ip_input_verify()

num of bytes read = 42
IP packets received....
Version: 4, Src IP: 192.168.0.11, Dest
IP: 192.168.0.22
Protocol: 1 (ICMP), ICMP Type: 8
(Echo), ICMP Code: 0
Identifier: 16811
begin icmp_input()
IP packets sent....
Version: 4, Src IP: 192.168.0.22, Dest
IP: 192.168.0.11
Protocol: 1 (ICMP), ICMP Type: 0
(Echo Reply), ICMP Code: 0
Identifier: 16811

 109

end icmp_input()

Fj5

Src IP: 192.168.0.11
Dest IP: 192.168.0.22
begin raw_sendto()
num of bytes written = 42
get_next_frame:: skip ethernet_input()
Eth [ARP] frame added to list
get_eth_arp_frame:: begin
ethernet_input()
num of bytes read = 42
get_eth_arp_frame:: ethernet_input()
returns ERR_OK
get_eth_arp_frame:: end
ethernet_input()
IP packet sent…
Ver: 4, Src IP: 192.168.0.11, Dest IP:
192.168.0.22,
Protocol: 1 (ICMP), ICMP Type: 8
(Echo), Code: 0
Identifier: 16811
num of bytes written = 42
end raw_sendto()
send_icmp() returns ERR_OK

begin ethernet_input()
ethernet_input() returns ERR_OK
end ethernet_input()
Eth [IP] frame added to list
begin ip_input_verify()
ip_input_verify() returns ERR_OK
end ip_input_verify()

num of bytes read = 42
IP packets received....
Version: 4, Src IP: 192.168.0.11, Dest
IP: 192.168.0.22
Protocol: 1 (ICMP), ICMP Type: 8
(Echo), ICMP Code: 0
Identifier: 16811
begin icmp_input()
IP packets sent....
Version: 4, Src IP: 192.168.0.22, Dest
IP: 192.168.0.11
Protocol: 1 (ICMP), ICMP Type: 0
(Echo Reply), ICMP Code: 0
Identifier: 16811
end icmp_input()

Function Test Group K: send_ping()
Test ID Expected Result (Net_Prod) Expected Result (Net_Cons)

Fk1

Src IP: 192.168.0.11
Dest IP: 192.168.0.22
begin raw_sendto()
num of bytes written = 42
get_next_frame:: skip ethernet_input()
Eth [ARP] frame added to list
num of bytes read = 42
get_eth_arp_frame:: begin
ethernet_input()
etharp_arp_input()

get_eth_arp_frame:: ethernet_input()
returns ERR_OK
get_eth_arp_frame:: end
ethernet_input()

begin ethernet_input()
etharp_arp_input()
num of bytes written = 42
ethernet_input() returns ERR_OK
end ethernet_input()
Eth [IP] frame added to list
num of bytes read = 42
begin ip_input_verify()
ip_input_verify() returns ERR_OK
end ip_input_verify()

IP packets received....
Version: 4, Src IP: 192.168.0.11,
Dest IP: 192.168.0.22

 110

IP packet sent…
Ver: 4, Src IP: 192.168.0.11, Dest IP:
192.168.0.22,
Protocol: 1 (ICMP), ICMP Type: 8
(Echo), Code: 0
Identifier: 16811
num of bytes written = 42
end raw_sendto()
send_icmp() returns ERR_OK

Protocol: 1 (ICMP), ICMP Type: 8
(Echo), ICMP Code: 0
Identifier: 16811
begin icmp_input()
IP packets sent....
Version: 4, Src IP: 192.168.0.22,
Dest IP: 192.168.0.11
Protocol: 1 (ICMP), ICMP Type: 0
(Echo Reply), ICMP Code: 0
Identifier: 16811
num of bytes written = 42
end icmp_input()

Fk2

Src IP: 192.168.0.11
Dest IP: 192.168.0.99
begin raw_sendto()
num of bytes written = 42
Unable to get ARP reply from
destination host. IP packet dropped.
end raw_sendto()
send_icmp() returns
LPSK_ETH_ARP_ERROR

begin ethernet_input()
etharp_arp_input()
etharp_arp_input: Warning: ARP
request was not for us.
ethernet_input() returns ERR_OK
end ethernet_input()

Fk3

Src IP: 192.168.0.11
Dest IP: 192.168.0.11
begin raw_sendto()
loopback
num of bytes written = 42

get_next_frame:: skip ethernet_input()
Eth [ARP] frame added to list
get_eth_arp_frame:: begin
ethernet_input()
num of bytes written = 42
get_eth_arp_frame:: ethernet_input()
returns ERR_OK
get_eth_arp_frame:: end
ethernet_input()
IP packet sent…
Ver: 4, Src IP: 192.168.0.11, Dest IP:
192.168.0.11,
Protocol: 1 (ICMP), ICMP Type: 8
(Echo), Code: 0
Identifier: 16811
num of bytes written = 42
end raw_sendto()

(none)

 111

send_icmp() returns ERR_OK

begin ethernet_input()
ethernet_input() returns ERR_OK
end ethernet_input()
Eth [IP] frame added to list
begin ip_input_verify()
ip_input_verify() returns ERR_OK
end ip_input_verify()
IP packets received....
Version: 4, Src IP: 192.168.0.11, Dest
IP: 192.168.0.11
Protocol: 1 (ICMP), ICMP Type: 8
(Echo), ICMP Code: 0
Identifier: 16811
begin icmp_input()
loopback
IP packets sent....
Version: 4, Src IP: 192.168.0.11, Dest
IP: 192.168.0.11
Protocol: 1 (ICMP), ICMP Type: 0
(Echo Reply), ICMP Code: 0
Identifier: 16811
num of bytes written = 42
end icmp_input()

Fk4

Src IP: 192.168.0.11
Dest IP: 192.168.2.111
begin raw_sendto()
raw_sendto: No route to dest IP address.
Packet not sent.
end raw_sendto()
send_icmp() returns ERR_RTE (Routing
Problem)

LPSK_IPTYPE_ERROR

 112

C. Acceptance Test Expected Results

This section lists the expected results of Net_Prod and Net_Cons partitions for

each acceptance test.

Acceptance Test A1
Expected Result (Net_Prod) Expected Result (Net_Cons)

[192.168.0.11] Ping 192.168.0.22 …
[192.168.0.11] IP packet sent …
 Version: 4
 Source IP: 192.168.0.11
 Destination IP: 192.168.0.22
 Protocol: 1 (ICMP)
 ICMP Type: 8 (Echo)
 Code: 0
 Identifier: 16811
[192.168.0.11] IP packet received …
 Version: 4
 Source IP: 192.168.0.22
 Destination IP: 192.168.0.11
 Protocol: 1 (ICMP)
 ICMP Type: 0 (Echo Reply)
 Code: 0
 Identifier: 16811

[192.168.0.22] Waiting for incoming …
[192.168.0.22] IP packet received …
 Version: 4
 Source IP: 192.168.0.11
 Destination IP: 192.168.0.22
 Protocol: 1 (ICMP)
 ICMP Type: 8 (Echo)
 Code: 0
 Identifier: 16811
[192.168.0.22] IP packet sent …
 Version: 4
 Source IP: 192.168.0.22
 Destination IP: 192.168.0.11
 Protocol: 1 (ICMP)
 ICMP Type: 0 (Echo Reply)
 Code: 0
 Identifier: 16811

 113

Acceptance Test A2
Expected Result (Net_Prod) Expected Result (Net_Cons)

[192.168.0.11] Ping 192.168.0.22 …
[192.168.0.11] IP packet sent …
 Version: 4
 Source IP: 192.168.0.11
 Destination IP: 192.168.0.22
 Protocol: 1 (ICMP)
 ICMP Type: 8 (Echo)
 Code: 0
 Identifier: 16811
[192.168.0.11] IP packet received …
 Version: 4
 Source IP: 192.168.0.22
 Destination IP: 192.168.0.11
 Protocol: 1 (ICMP)
 ICMP Type: 8 (Echo)
 Code: 0
 Identifier: 16822
[192.168.0.11] IP packet sent …
 Version: 4
 Source IP: 192.168.0.11
 Destination IP: 192.168.0.22
 Protocol: 1 (ICMP)
 ICMP Type: 0 (Echo Reply)
 Code: 0
 Identifier: 16822
[192.168.0.11] IP packet received …
 Version: 4
 Source IP: 192.168.0.22
 Destination IP: 192.168.0.11
 Protocol: 1 (ICMP)
 ICMP Type: 0 (Echo Reply)
 Code: 0
 Identifier: 16811

[192.168.0.22] Ping 192.168.0.11 …
[192.168.0.22] IP packet sent …
 Version: 4
 Source IP: 192.168.0.22
 Destination IP: 192.168.0.11
 Protocol: 1 (ICMP)
 ICMP Type: 8 (Echo)
 Code: 0
 Identifier: 16822
[192.168.0.22] IP packet received …
 Version: 4
 Source IP: 192.168.0.11
 Destination IP: 192.168.0.22
 Protocol: 1 (ICMP)
 ICMP Type: 8 (Echo)
 Code: 0
 Identifier: 16811
[192.168.0.22] IP packet sent …
 Version: 4
 Source IP: 192.168.0.22
 Destination IP: 192.168.0.11
 Protocol: 1 (ICMP)
 ICMP Type: 0 (Echo Reply)
 Code: 0
 Identifier: 16811
[192.168.0.22] IP packet received …
 Version: 4
 Source IP: 192.168.0.11
 Destination IP: 192.168.0.22
 Protocol: 1 (ICMP)
 ICMP Type: 0 (Echo Reply)
 Code: 0
 Identifier: 16822

 114

Acceptance Test A3
Expected Result (Net_Prod) Expected Result (Net_Cons)

[192.168.0.11] Ping 192.168.0.22 …
Unable to get ARP reply from destination
host. IP packet dropped.
send_icmp() returns
LSPK_ETH_ARP_ERROR

(none)

 115

LIST OF REFERENCES

[1] C.E. Irvine, T.E. Levin, P.C. Clark, and T.D. Nguyen, “A security architecture for
transient trust,” in Computer Security Architecture Workshop, Fairfax, VA,
October 2008.

[2] C.E. Irvine, T.E. Levin, T.D. Nguyen, and G.W. Dinolt, “The trusted computing
exemplar project,” in Proc. 2004 IEEE Systems, Man and Cybernetics
Information Assurance Workshop, West Point, NY, June 2004, pp. 109–115.

[3] W. R. Stevens, TCP/IP Illustrated, Volume 1: The Protocols. New York:
Addison-Wesley, 1994.

[4] R. Braden, Requirements of Internet Hosts – Communication Layers [Online].
Available: http://tools.ietf.org/html/rfc1122. [Accessed October 19, 2010].

[5] Internet Protocol Suite [Online]. Available:
http://en.wikipedia.org/wiki/Internet_Protocol_Suite. [Accessed October 19,
2010].

[6] A. S. Tanenbaum, Computer Networks. Amsterdam, The Netherlands: Prentice
Hall, 2002.

[7] IEEE 802.3 [Online]. Available: http://www.ieee802.org/3/. [Accessed October
19, 2010].

[8] D.L. Shinder, Computer Networking Essentials. Indianapolis: Cisco Press, 2002,
ch. 4, pp. 109-131.

[9] W. R. Stevens, B. Fenner, A.M. Rudoff, UNIX Network Programming: The
sockets networking API, Volume 1 (3rd ed.). New York: Addison-Wesley, 2004.

[10] J. Postel, Internet Control Message Protocol [Online]. Available:
http://tools.ietf.org/html/rfc792. [Accessed October 19, 2010].

[11] TCP/IP and tcpdump Pocket reference guide [Online]. Available:
http://www.sans.org/security-resources/tcpip.pdf. [Accessed October 19, 2010].

[12] The Internet Engineering Task Force (IETF) [Online]. Available:
http://www.ietf.org [Accessed October 19, 2010].

[13] J. P. Anderson, Computer Security Technology Planning Study, ESD-TR-73-51,
vol. I, ESD/AFSC, Hanscom AFB, Bedford, MA., October 1972 (NTIS AD-758
206).

 116

[14] S. H. Ames, M. Gasser, and R. R. Schell, “Security kernel design and
implementation: An introduction.” IEEE Computer, vol. 16, no. 7, pp. 14–22,
1983.

[15] J. Rushby, “The design and verification of secure systems,” in 8th ACM
Symposium on Operating System Principles, 1981, vol. 15, no. 5, pp. 12–21.

[16] T. E. Levin, C. E. Irvine, and T. D. Nguyen, “Least privilege in separation
kernels,” in E-business and Telecommunication Networks (J. Filipe and M. S.
Obaidat, eds.), vol. 9 of Communications in Computer and Information Science,
pp. 146 – 158, Berlin: Springer, 2008.

[17] J.H. Saltzer and M.D. Schroeder, “The Protection of Information in Operating
Systems,” in Proc. IEEE, 1975, vol. 63(9), pp. 1278–1308.

[18] Information Assurance Directorate, “U.S. Government Protection Profile for
Separation Kernels in Environments Requiring High Robustness,” [Online].
Version 1.03, June 2007. Available:
http://www.commoncriteriaportal.org/files/ppfiles/pp_skpp_hr_v1.03.pdf.
[Accessed October 19, 2010].

[19] C. M. Kozierok, The TCP/IP guide: a comprehensive, illustrated Internet
protocols reference, San Francisco, California: No Starch Press, 2005.

[20] P.C. Clark, D.J. Shifflett, C.E. Irvine, T.D. Nguyen, and T.E. Levin, “Trusted
Computing Exemplar Least Privilege Product Functional Specification,” Naval
Postgraduate School Center for Information Systems Security Studies and
Research, 2010.

[21] C.E. Irvine, T. E. Levin, P.C. Clark, and T.D. Nguyen, “A Security Architecture
for Transient Trust,” in Computer Security Architecture Workshop, October 2008,
Fairfax, VA.

[22] T.E. Levin, C.E. Irvine, T.V. Benzel, G. Bhaskara, P.C. Clark, and T.D. Nguyen,
“Design Principles and Guidelines for Security.” NPS-CS-07-014, Naval
Postgraduate School, Monterey, CA, November 2007.

[23] uIP – A TCP/IP protocol stack for small 8-bit and 16-bit microcontrollers
[Online]. Available: http://www.dunkels.com/adam/uip/. [Accessed October 22,
2010].

[24] lwIP – A Lightweight TCP/IP Stack [Online]. Available:
http://savannah.nongnu.org/projects/lwip/. [Accessed October 15, 2010].

[25] TinyTCP [Online]. Available:
http://www.unusualresearch.com/tinytcp/tinytcp.htm. [Accessed October 22,
2010].

 117

[26] uC/IP – The uC/IP Project [Online]. Available: http://ucip.sourceforge.net/
[Accessed October 22, 2010].

[27] A. Dunkels, Design and Implementation of the LWIP TCP/IP Stack [Online].
Available: http://www.sics.se/~adam/lwip/doc/lwip.pdf. [Accessed October 21,
2010].

[28] D. D. Clark. Modularity and efficiency in protocol implementation [Online].
Available: http://tools.ietf.org/html/rfc817. [Accessed October 15, 2010].

[29] Netif Struct Reference [Online]. Available:
http://www.nongnu.org/lwip/structnetif.html. [Accessed October 21, 2010].

[30] LWIP Source Download [Online]. Available:
http://download.savannah.gnu.org/releases/lwip/. [Accessed October 15, 2010].

[31] VMware Workstation [Online]. Available:
http://www.vmware.com/products/workstation/. [Accessed October 15, 2010].

[32] Windows 7 Professional [Online]. Available:
http://www.microsoft.com/windows/windows-7. [Accessed October 15, 2010].

[33] Fedora Core Project [Online]. Available: http://fedoraproject.org/. [Accessed
October 15, 2010].

[34] Open Watcom Main Page [Online]. Available: http://openwatcom.org. [Accessed
October 15, 2010].

[35] Ng Yeow Cheng, “Applications to support Normal and Critical Operations in a
tactical MLS System,” Master’s thesis. Naval Postgraduate School, Monterey
California, December 2010.

[36] N.Doraswamy and D. Harkins, IPSec: The New Security Standard for the
Internet, Intranets, and Virtual Private Network (2nd ed.). Upper Saddle River,
NJ: Prentice Hall, 2003, pp. 43–58.

 118

THIS PAGE INTENTIONALLY LEFT BLANK

 119

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, VA

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, CA

3. Kris Britton

National Security Agency
Fort Meade, MD

4. John Campbell

National Security Agency
Fort Meade, MD

5. Deborah Cooper

DC Associates, LLC
Reston, VA

6. Grace Crowder
NSA
Fort Meade, MD

7. Louise Davidson
National Geospatial Agency
Bethesda, MD

8. Vincent J. DiMaria
National Security Agency
Fort Meade, MD

9. Rob Dobry
 NSA
 Fort Meade, MD

10. Jennifer Guild

SPAWAR
Charleston, SC

11. CDR Scott Heller
 SPAWAR
 Charleston, SC

 120

12. Dr. Steven King

ODUSD
Washington, DC

13. Steve LaFountain
 NSA
 Fort Meade, MD

14. Dr. Greg Larson
 IDA
 Alexandria, VA

15. Dr. Carl Landwehr

National Science Foundation
Arlington, VA

16. Dr. John Monastra

Aerospace Corporation
Chantilly, VA

17. John Mildner

SPAWAR
Charleston, SC

18. Dr. Victor Piotrowski

National Science Foundation
Arlington, VA

19. Jim Roberts
Central Intelligence Agency

 Reston, VA

20. Ed Schneider
 IDA
 Alexandria, VA

21. Mark Schneider

NSA
Fort Meade, MD

22. Keith Schwalm

Good Harbor Consulting, LLC
Washington, DC

 121

23. Ken Shotting
NSA
Fort Meade, MD

24. Dr. Ralph Wachter
 ONR
 Arlington, VA

25. Dr. Cynthia E. Irvine

Naval Postgraduate School
Monterey, CA

26. David Shifflett

Naval Postgraduate School
Monterey, CA

27. Professor Yeo Tat Soon
Temasek Defence Systems Institute (TDSI)
National University of Singapore
Singapore

28. Tan Lai Poh
Temasek Defence Systems Institute (TDSI)
National University of Singapore
Singapore

29. Ho Liang Yoong
Singapore Technologies Engineering
Singapore

